弧度制教案(2)

弧度制教案(2)

ID:27732588

大小:18.67 KB

页数:10页

时间:2018-12-04

弧度制教案(2)_第1页
弧度制教案(2)_第2页
弧度制教案(2)_第3页
弧度制教案(2)_第4页
弧度制教案(2)_第5页
资源描述:

《弧度制教案(2)》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。弧度制教案(2)本资料为woRD文档,请点击下载地址下载全文下载地址课  件www.5y  kj.com  弧度制  教学目的:  .理解1弧度的角、弧度制的定义.  2.掌握角度与弧度的换算公式并能熟练地进行角度与弧度的换算.  3.熟记特殊角的弧度数  教学重点:使学生理解弧度的意义,正确地进行角度与弧度的换算.  教学难点:弧度的概念及其与角度的关系.  授课类型:新授课  课时安排:1课时  教  具:多媒体、实物投影仪  内容分析:

2、团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  讲清1弧度角的定义,使学生建立弧度的概念,理解弧度制的定义,达到突破难点之目的.通过电教手段的直观性,使学生进一步理解弧度作为角的度量单位的可靠性、可行性.通过周角的两种单位制的度量,得到角度与弧度的换算公式.使学生认识到角度制、弧度制都是度量角的制度,二者虽单位不同,但是互

3、相联系的、辩证统一的.进一步加强对辩证统一思想的理解.  教学过程:  一、复习引入:  .角的概念的推广  ⑴“旋转”形成角  一条射线由原来的位置oA,绕着它的端点o按逆时针方向旋转到另一位置oB,就形成角α.旋转开始时的射线oA叫做角α的始边,旋转终止的射线oB叫做角α的终边,射线的端点o叫做角α的顶点.  ⑵.“正角”与“负角”“0角”  我们把按逆时针方向旋转所形成的角叫做正角,把按顺时针方向旋转所形成的角叫做负角,如图,以oA为始边的角α=210°,β=-150°,γ=660°,  2.度量角的大小第一种单位制—角度制的定义  初中几何

4、中研究过角的度量,当时是用度做单位来度量角,1°的角是如何定义的?  规定周角的作为1°的角,我们把用度做单位来度量角的制度叫做角度制,有了它,可以计算弧长,公式为  3.探究  30°、60°的圆心角,半径r为1,2,3,4,分别计算对应的弧长l,再计算弧长与半径的比团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  结论:圆心

5、角不变,则比值不变,  因此比值的大小只与角的大小有关,我们可以利用这个比值来度量角,这就是另一种度量角的制度——弧度制  一样有不同的方法,千米、米、厘米与丈、尺、寸,反映了事物本身不变,改变的是不同的观察、处理方法,因此结果就有所不同  用角度制和弧度制来度量零角,单位不同,但数量相同(都是0)  用角度制和弧度制来度量任一非零角,单位不同,量数也不同  二、角度制与弧度制的换算:  ∵360=2rad  ∴180=rad  ∴1=  三、讲解范例:  例1把化成弧度

6、  解:  ∴  例2  把化成度  解:团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  注意几点:1.度数与弧度数的换算也可借助“计算器”进行;  2.今后在具体运算时,“弧度”二字和单位符号“rad”可以省略  如:3表示3rad,sin表示rad角的正弦;  3.一些特殊角的度数与弧度数的

7、对应值应该记住:  角度  0°  30°  45°  60°  90°  20°  35°  50°  80°  弧度  0  π/6  π/4  π/3  π/2团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。  2π/3  3π/4  5π/6  π  角度  210°  225°  240°  270°  300°  31

8、5°  330°  360°  弧度  7π/6  5π/4  4π/3  3π/2  5π/3  7π/4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。