欢迎来到天天文库
浏览记录
ID:27635687
大小:545.55 KB
页数:52页
时间:2018-12-04
《[财务管理]第十章+因子分析》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第十章SPSS因子分析本章内容10.1因子分析概述10.2因子分析的基本内容10.3因子分析的基本操作及案例汇报什么?假定你是一个公司的财务经理,掌握了公司的所有数据,比如固定资产、流动资金、每一笔借贷的数额和期限、各种税费、工资支出、原料消耗、产值、利润、折旧、职工人数、职工的分工和教育程度等等。如果让你向上面介绍公司状况,你能够把这些指标和数字都原封不动地摆出去吗?当然不能。你必须要把各个方面作出高度概括,用一两个指标简单明了地把情况说清楚。10.1因子分析概述10.1.1因子分析的意义在实际问题的分析过程中,人们往往希望尽可能多的搜集关于分析对象的数据信息,进而能够
2、比较全面的、完整的把握和认识它。于是,对研究对象的描述就会有很多指标。但是效果如何呢?如果搜集的变量过多,虽然能够比较全面精确的描述事物,但在实际建模时这些变量会给统计分析带来计算量大和信息重叠的问题。而消减变量个数必然会导致信息丢失和信息不完整等问题的产生。因子分析是解决上述问题的一种非常有效的方法。它以最少的信息丢失,将原始众多变量综合成较少的几个综合指标(因子),能够起到有效降维的目的。因子分析有如下特点。(1)因子变量的数量远少于原有的指标变量的数量,对因子变量的分析能够减少分析中的计算工作量。(2)因子变量不是对原有变量的取舍,而是根据原始变量的信息进行重新组构
3、,它能够反映原有变量大部分的信息。(3)因子变量之间不存在线性相关关系,对变量的分析比较方便。(4)因子变量具有命名解释性,即该变量是对某些原始变量信息的综合和反映。对多变量的平面数据进行最佳综合和简化,即在保证数据信息丢失最少的原则下,对高维变量空间进行降维处理。显然,在一个低维空间解释系统,要比在一个高维系统空间容易得多。英国统计学家MoserScott在1961年对英国157个城镇发展水平进行调查时,原始测量的变量有57个,而通过因子分析发现,只需要用5个新的综合变量(它们是原始变量的线性组合),就可以解释95%的原始信息。对问题的研究从57维度降低到5个维度,因此
4、可以进行更容易的分析。10.1.2因子分析的数学模型和相关概念数学模型假设原有变量有p个,分别用表示,且每个变量的均值是0,标准差是1,现将每个原有变量用k(k
5、载荷是第i个变量与第j个因子的相关系数。因子载荷越大说明因子与变量的相关性越强,所以因子载荷说明了因子对变量的重要作用和程度。2、变量共同度变量共同度也称为公共方差。第i个变量的共同度定义为因子载荷矩阵中第i行元素的平方和,即:可见:Xi的共同度反应了全部因子变量对Xi总方差的解释能力3、因子的方差贡献因子方差贡献是因子载荷矩阵中第j列元素的平方和,反映了第j个因子对原有变量总方差的解释能力。该数值越高,说明相应因子的重要性越高。10.2因子分析的基本内容10.2.1因子分析的基本步骤1、因子分析的前提条件;因子分析的前提条件是原始变量之间应存在较强的相关关系。2、因子提
6、取;3、使因子更具有命名可解释性;4、计算各样本的因子得分。因子分析是从众多的原始变量中构造出少数几个具有代表意义的因子变量,这里面有一个潜在的要求,即原有变量之间要具有比较强的相关性。如果原有变量之间不存在较强的相关关系,那么就无法从中综合出能反映某些变量共同特性的少数公共因子变量来。因此,在因子分析时,需要对原有变量作相关分析。10.2.2因子分析的前提条件最简单的方法就是计算变量之间的相关系数矩阵。如果相关系数矩阵在进行统计检验中,大部分相关系数都小于0.3,并且未通过统计检验,那么这些变量就不适合于进行因子分析。1.巴特利特球形检验(BartlettTestofS
7、phericity)2.反映像相关矩阵检验(Anti-imagecorrelationmatrix)3.KMO(Kaiser-Meyer-Olkin)检验1、Bartlett’s球度检验以原有变量的相关系数矩阵为出发点,其假设相关系数为单位矩阵。巴特利特球度检验的检验统计量根据相关系数矩阵的行列式计算得到,且近似服从卡方分布。如果该统计量的观测值比较大,且对应的概率P值小于给定的显著性水平a,则应拒绝原假设,认为原有变量适合进行因子分析。2、计算反映象相关矩阵MSAi值越接近于1,意味着变量xi与其他变量的相关性越强,越接近于
此文档下载收益归作者所有