欢迎来到天天文库
浏览记录
ID:27165225
大小:17.35 KB
页数:5页
时间:2018-12-01
《xx六年级数学上册第三单元重要知识点汇总》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。XX六年级数学上册第三单元重要知识点汇总 第三单元分数除法 一、分数除法 1、分数除法的意义: 乘法:因数×因数=积除法:积÷一个因数=另一个因数 分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。 2、分数除法的计算法则: 除以一个不为0的数,等于乘这个数的倒数。 3、规律(分数除法比较大小时): (1)、当除数大于1,商小于被除数; (2)、当除数小于1(不等于0),商大于被除数; (3)、当除数等于1,商
2、等于被除数。 4、“ ”叫做中括号。一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。 二、分数除法解决问题 (未知单位“1”的量(用除法): 已知单位“1”的几分之几是多少,求单位“1”的量。) 1、数量关系式和分数乘法解决问题中的关系式相同:团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 (1)分率前是
3、“的”:单位“1”的量×分率=分率对应量 (2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量 2、解法:(建议:最好用方程解答) (1)方程:根据数量关系式设未知量为X,用方程解答。 (2)算术(用除法):对应量÷对应分率=单位“1”的量 3、求一个数是另一个数的几分之几:就一个数÷另一个数 4、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或: ①求多几分之几:大数÷小数–1 ②求少几分之几:1-小数÷大数 三、比和比的应用 (一)、比的意义 1、比的意义:两个数相除又叫做两个数的比。 2、在两个数的比中
4、,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。比的后项不能为0,因为比的后项相当于除法中的除数,除数不能为0. 例如15:10=15÷10= (比值通常用分数表示,也可以用小数或整数表示)团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 ∶∶∶∶ 前项比号后项比值 3、比可以表示两个相同量的关系,
5、即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程÷速度=时间。 4、求比值的方法:用比的前项除以比的后项。 5、区分比和比值 比:表示两个数的倍数关系,可以写成比的形式,也可以用分数表示。有比的前项和比的后项 比值:相当于商,是一个数,是一个结果,可以是整数,分数,也可以是小数。 6、根据分数与除法的关系,两个数的比也可以写成分数形式。例如3:2也可以写成,仍读作“3:2”。 7、比和除法、分数的联系: 比前项比号“:”后项比值除法被除数除号“÷”除数商分数分子分数线“—”分母分数值 8、比和除法、分数的区别:除法是一种运算,分数是一个数,比
6、表示两个数的关系。 9、根据比与除法、分数的关系,可以理解比的后项不能为0。 体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。团结创新,尽现丰富多彩的课余生活1。庆祝##系成立之时,我们学生会举办了一次“邀明月,共成长,师生同欢”茶话会。职教系部分老师和我系全体教师以及各班班委参加了此茶话会。学生会成立以来,学生会搞了一系列的活动,而且都取得了较好的成绩。通过各部的相互努力,我们获得了不少经验。 (二)、比的基本性质 1、根据比、除法、分数的关系: 商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。 分数的基本
7、性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。 比的基本性质:比的前项和后项同时乘或除以相同的数,比值不变。 2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。 3、根据比的基本性质,可以把比化成最简单的整数比。 4.化简比: (1)依据比的基本性 ①用比的前项和后项同时除以它们的最大公因数。 ②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 ③两个小数的比:向右移动小数点的位置,先化成整数比再化简。 (2)用求比值的方法。 如:15∶10
此文档下载收益归作者所有