《分式方程的解法》ppt课件

《分式方程的解法》ppt课件

ID:27131427

大小:338.01 KB

页数:19页

时间:2018-12-01

《分式方程的解法》ppt课件_第1页
《分式方程的解法》ppt课件_第2页
《分式方程的解法》ppt课件_第3页
《分式方程的解法》ppt课件_第4页
《分式方程的解法》ppt课件_第5页
资源描述:

《《分式方程的解法》ppt课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、16.3.1分式方程的解法(1)一艘轮船在静水中的最大航速为20千米/时,它沿江以最大航速顺流航行100千米所用时间,与以最大航速逆流航行60千米所用时间相等,江水的流速为多少?解:设江水的流速为v千米/时,根据题意,得分母中含未知数的方程叫做?.情境问题分式方程像这样,分母里含有未知数的方程叫做分式方程。以前学过的分母里不含有未知数的方程叫做整式方程。下列方程中,哪些是分式方程?哪些整式方程.整式方程分式方程解得:下面我们一起研究下怎么样来解分式方程:方程两边同乘以(20+v)(20-v),得:在解分式方程的过程中体现了一个非常重要的数学思想方法:转化的数学思想(化归思想)。

2、探究检验:将v=5代入分式方程,左边=4=右边,所以v=5是原分式方程的解。解分式方程:解:方程两边同乘以最简公分母(x-5)(x+5),得:x+5=10解得:x=5检验:将x=5代入x-5、x2-25的值都为0,相应分式无意义。所以x=5不是原分式方程的解。∴原分式方程无解。为什么会产生增根?增根的定义增根:在去分母,将分式方程转化为整式方程的过程中出现的不适合于原方程的根.产生的原因:分式方程两边同乘以一个零因式后,所得的根是整式方程的根,而不是分式方程的根.所以我们解分式方程时一定要代入最简公分母检验········使最简公分母值为零的根·········例1:解:方程两

3、边同乘x(x-3),得:2x=3x-9解得:x=9检验:将x=9时x(x-3)≠0因此9是分式方程的解.例2:解:方程两边同乘(x+2)(x-1),得:x(x+2)-(x+2)(x-1)=3解得:x=1检验:x=1时(x+2)(x-1)=0,1不是原分式方程的解,原分式方程无解.解分式方程的一般步骤1、在方程的两边都乘以最简公分母,约去分母,化成整式方程.2、解这个整式方程.3、把整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去.4、写出原方程的根.解分式方程的思路是:分式方程整式方程去分母一化二解三

4、检验解分式方程容易犯的错误有:(1)去分母时,原方程的整式部分漏乘.(2)约去分母后,分子是多项式时,没有注意添括号.(因分数线有括号的作用)(3)增根不舍掉。解分式方程练习1.当m为何值时,方程会产生增根补充练习:2.解关于x的方程产生增根,则常数m的值等于()(A)-2(B)-1(C)1(D)2x-3x-1x-1m=我今天的收获:小组讨论、相互交流,大家畅所欲言,表达自己的收获。小结1、解分式方程的思路是:分式方程整式方程去分母2、解分式方程的一般步骤:一化二解三检四写根1、在方程的两边都乘以最简公分母,约去分母,化成整式方程.2、解这个整式方程.3、把整式方程的解代入最简

5、公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解,必须舍去.4、写出原方程的根.让我们一起加油:作业:习题16.3:1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。