勾股定理勾股定理的逆定理第课时

勾股定理勾股定理的逆定理第课时

ID:27068630

大小:1.35 MB

页数:26页

时间:2018-11-30

勾股定理勾股定理的逆定理第课时_第1页
勾股定理勾股定理的逆定理第课时_第2页
勾股定理勾股定理的逆定理第课时_第3页
勾股定理勾股定理的逆定理第课时_第4页
勾股定理勾股定理的逆定理第课时_第5页
资源描述:

《勾股定理勾股定理的逆定理第课时》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第十七章 勾股定理17.2勾股定理的逆定理 (第1课时)湖北省咸宁市温泉中学廖文涛八年级下册课件说明课题内容勾股定理的逆定理证明及简单应用;原命题、逆命题的概念及相互关系.学习目标理解勾股定理的逆定理.了解互逆命题、互逆定理.创设情境,提出问题问题1:你能说出勾股定理吗?并指出定理的题设和结论.追问1:你能把勾股定理的题设与结论交换得到一个新的命题吗?追问2:“如果三角形三边长a、b、c满足,那么这个三角形是直角三角形.”能否把它作为判定直角三角形的依据呢?本节课我们一起来研究这个问题.古埃及人曾用下面的方法得到直角实验观察问题2:按照这种做法真能得到一个直角三角形吗?用13个

2、等距的结,把一根绳子分成等长的12段,然后以3个结,4个结,5个结的长度为边长,用木桩钉成一个三角形,其中一个角便是直角。实验观察345追问:这个三角形的三条边有什么关系吗?324252+=实验观察(1)下列各组数中两个数的平方和等于第三个数的平方,分别以这些数为边长(单位:cm)画三角形:①2.5,6,6.5;②4,7.5,8.5.动手画一画(2)量一量:用量角器分别测量上述各三角形的最大角的度数.(3)想一想:判断这些三角形的形状,提出猜想.实验操作提出猜想问题2由上面几个例子你发现了什么吗?请以命题的形式说出你的观点!命题2如果三角形的三边长a、b、c满足那么这个三角形是

3、直角三角形。a2+b2=c2实验操作提出猜想归纳概念两个命题的题设和结论正好相反,象这样的两个命题叫做互逆命题,如果其中一个叫原命题,那么另一个就叫做它的逆命题.问题3:把勾股定理记着命题1,上面的结论作为命题2.命题1和命题2的题设和结论分别是什么?问题4:命题1和命题2的题设和结论有着什么的关系?如果直角三角形两直角边分别为a,b,斜边为c,那么有a2+b2=c2勾股定理如果三角形的三边长a、b、c满足那么这个三角形是直角三角形。a2+b2=c2互逆命题归纳概念问题5:请同学们举出一些互逆命题,并思考:是否原命题正确,它的逆命题也正确呢?举例说明.追问1:在我们大家举出的互

4、逆命题中原命题和逆命题都成吗?问题6:原命题正确,它的逆命题不一定正确.那么勾股定理的逆命题正确吗?如果你认为是真确的,你能证明这个命题“如果三角形的三边长、b、c满足,那么这个三角形是直角三角形”吗?勾股定理逆定理的证明已知:在△ABC中,AB=cBC=aCA=b且a2+b2=c2求证:△ABC是直角三角形.A′B′C′BCA证明:画一个△A’B’C’,使∠C’=90°,B’C’=a,C’A’=b∴A’B’=c∵边长取正值∴A’B’2=c2∵a2+b2=c2∵∠C/=900∴A’B’2=a2+b2勾股定理逆定理的证明在△ABC和△A’B’C’中BC=a=B’C’CA=b=C’

5、A’AB=c=A’B’∴△ABC≌△A’B’C’(SSS)∴∠C=∠C/=90°则△ABC是直角三角形(直角三角形的定义)定理与逆定理我们已经学习了一些互逆的定理,如:(1)勾股定理及其逆定理;(2)两直线平行,内错角相等;(3)内错角相等,两直线平行.(4)角的平分线的性质与判定;(5)线段的垂直平分线的性质与判定.如果一个定理的逆命题经过证明是真命题,那么它是一个定理,这两个定理称为互逆定理,其中一个定理称另一个定理的逆定理.(1)a=15,b=8,c=17(2)a=13,b=14,c=15分析:根据勾股定理的逆定理,一个三角形中两条较小边长的平方和等于最大边长的平方,那么

6、这个三角形是直角三角形例1判断由a、b、c组成的三角形是不是直角三角形:定理应用解(1)152+82=225+64=289172=289∴152+82=172∴这个三角形是直角三角形(2)132+142=169+196=365152=225因为132+142≠152,根据勾股定理,这个三角形不是三角形.定理应用勾股数能够成为直角三角形三条边长的三个正整数,称为勾股数定理应用所以这个三角形是直角三角形.练习:同学们还知道哪些勾股数?请完成以下未完成的勾股数.(1)3,4,,(2)6,8,,(3)7,24,,(4)5,12,,(5)9,12,.课堂练习1判断由a、b、c组成的三角形

7、是不是直角三角形:(1)a=6.5,b=7.5,c=4(2)a=11,b=60,c=612、已知a,b,c为△ABC的三边,且满足试判断△ABC的形状.课堂小结(1)勾股定理的逆定理的内容是什么?(2)原命题、逆命题之间的关系.(3)用什么方法证明勾股定理的逆定理?布置作业教科书第33页练习1,2题,习题17.2第4,5题.目标检测设计1.以长度分别为下列各组数的线段为边,能构成直角三角形的有哪些?(1)1,2,3(2)6,8,14(3)2,1.5,2.52.说出下列命题的逆命题,这些命题的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。