欢迎来到天天文库
浏览记录
ID:25888829
大小:315.03 KB
页数:8页
时间:2018-11-23
《勾股定理基础练习》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、勾股定理学习要求:1.掌握勾股定理的内容及证明方法,能够熟练地运用勾股定理由已知直角三角形中的两条边长求出第三条边长.2.掌握勾股定理,能够运用勾股定理解决简单的实际问题,会运用方程思想解决问题.3.熟练应用勾股定理解决直角三角形中的问题,进一步运用方程思想解决问题.4.掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.知识精讲1.勾股定理的内容:如果直角三角形的两直角边分别是、,斜边为,那么.即直角三角形中两直角边的平方和等于斜边的平方。注:勾——最短的边、股——
2、较长的直角边、弦——斜边。2.勾股定理的证明:(1)方法一:将四个全等的直角三角形拼成如图所示的正方形:(2)方法二:将四个全等的直角三角形拼成如图所示的正方形:(3)方法三:“总统”法.如图所示将两个直角三角形拼成直角梯形:81.勾股定理的逆定理:如果三角形中两边的平方和等于第三边的平方,那么这个三角形是直角三角形。即。2.勾股数:满足的三个正整数,称为勾股数.勾股数扩大相同倍数后,仍为勾股数.常用勾股数:3、4、5;5、12、13;7、24、25;8、15、17。课堂练习一、勾股定理1.如果直角三角形的
3、两直角边长分别为a、b,斜边长为c,那么______=c2;这一定理在我国被称为______.2.△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.(1)若a=5,b=12,则c=______;(2)若c=41,a=40,则b=______;(3)若∠A=30°,a=1,则c=______,b=______;(4)若∠A=45°,a=1,则b=______,c=______.3.如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A→B→C所走的路程为______.4.等腰
4、直角三角形的斜边为10,则腰长为______,斜边上的高为______.5.在直角三角形中,一条直角边为11cm,另两边是两个连续自然数,则此直角三角形的周长为______.6.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为().(A)8(B)4(C)6(D)无法计算7.如图,△ABC中,AB=AC=10,BD是AC边上的高线,DC=2,则BD等于().(A)4(B)6(C)8(D)88.如图,Rt△ABC中,∠C=90°,若AB=15cm,则正方形ADEC和正方形BCFG的面积和为().(A
5、)150cm2(B)200cm2(C)225cm2(D)无法计算9.在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别为a、b、c.(1)若a∶b=3∶4,c=75cm,求a、b;(2)若a∶c=15∶17,b=24,求△ABC的面积;(3)若c-a=4,b=16,求a、c;(4)若∠A=30°,c=24,求c边上的高hc;(5)若a、b、c为连续整数,求a+b+c.10.若直角三角形的三边长分别为2,4,x,则x的值可能有().(A)1个(B)2个(C)3个(D)4个13.如图,Rt△ABC中,∠
6、C=90°,∠A=30°,BD是∠ABC的平分线,AD=20,求BC的长.二、勾股定理的实际应用1.若一个直角三角形的两边长分别为12和5,则此三角形的第三边长为______.82.甲、乙两人同时从同一地点出发,已知甲往东走了4km,乙往南走了3km,此时甲、乙两人相距______km.3.如图,有一块长方形花圃,有少数人为了避开拐角走“捷径”,在花圃内走出了一条“路”,他们仅仅少走了______m路,却踩伤了花草.3题图4.如图,有两棵树,一棵高8m,另一棵高2m,两树相距8m,一只小鸟从一棵树的树梢飞到
7、另一棵树的树梢,至少要飞______m.4题图5.如图,一棵大树被台风刮断,若树在离地面3m处折断,树顶端落在离树底部4m处,则树折断之前高().5题图(A)5m(B)7m(C)8m(D)10m6.如图,从台阶的下端点B到上端点A的直线距离为().6题图(A)(B)(C)(D)7.在平静的湖面上,有一支红莲,高出水面1米,一阵风吹来,红莲移到一边,花朵齐及水面,已知红莲移动的水平距离为2米,求这里的水深是多少米?88.如图,一电线杆AB的高为10米,当太阳光线与地面的夹角为60°时,其影长AC为______
8、米.9.如图,在高为3米,斜坡长为5米的楼梯表面铺地毯,则地毯的长度至少需要多少米?若楼梯宽2米,地毯每平方米30元,那么这块地毯需花多少元?三、勾股定理与直角三角形1.在△ABC中,若∠A+∠B=90°,AC=5,BC=3,则AB=______,AB边上的高CE=______.2.在△ABC中,若AB=AC=20,BC=24,则BC边上的高AD=______,AC边上的高BE=______.3.在△ABC中,若
此文档下载收益归作者所有