在高中数学教学中培养学生的抽象概括能力论文

在高中数学教学中培养学生的抽象概括能力论文

ID:25696256

大小:50.50 KB

页数:4页

时间:2018-11-22

在高中数学教学中培养学生的抽象概括能力论文_第1页
在高中数学教学中培养学生的抽象概括能力论文_第2页
在高中数学教学中培养学生的抽象概括能力论文_第3页
在高中数学教学中培养学生的抽象概括能力论文_第4页
资源描述:

《在高中数学教学中培养学生的抽象概括能力论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、在高中数学教学中培养学生的抽象概括能力论文抽象概括能力是学好数学的重要条件,也是数学教学的任务之一。加之数学学科本身的特点,需要学生在学习中就有较强的概括能力,因此教师在教学中要注意培养学生的抽象概括能力。在数学学习中抽象概括能力是学好数学的重要条件,也是数学教学的任务之一。加之数学学科本身的特点,需要学生在学习中就有较强的概括能力,因此教师在教学中要注意培养学生的抽象概括能力。在数学学习中,学生既要能抓住问题的特征,又要能自觉地排除一些非本质因素的干扰,由此及彼、由表及里地进行分析和综合的能力。还要有发现问题中条件的细微变化的能力,抓住问题的关键点和切入点

2、,从而进行尝试和突破。然而由于数学本身的抽象性,导致一些学生理解上的偏差,因此教师在教学中要善于引导学生进行抽象概括,培养学生的抽象概括能力。学会把本质的和非本质的东西区分开,把具体问题抽象为数学问题,进而提高学生的数学能力。一、在概括文本知识的过程中,培养学生的概括能力教师在学完每一节课后,根据学生的反应和内容的特点,进行教后概括,这种概括不是简单总结,而是要高于课本知识。经过概括后的知识要便于学生记忆和掌握。比如说,“用比较法证明不等式”,有时候用“作商”比较法,有时候用“作差”比较法,这种方法也常常用在抽象函数的单调性证明中,但学生不一定能很快地接受及

3、分辨清楚。为了改善这样的情况,教师可以把这两种思路讲完后,进行总结归纳。1、如函数f(x+y)=f(x)·f(y)中,当x>0,f(x)<0时,这种形式常常采取“作差”比较,且与0比较大小。2、如函数f(xy)=f(x)+f(y)中,当x>1,f(x)<0时,这种形式常常采取“作商”比较,且与1比较大小。这样概括后,学生对抽象函数的两种形式能基本掌握,并且能很好地运用它们。这种对相应知识的归纳、概括能力不仅是学习的需要,在今后的生活和工作中也是非常重要的,教师在教学中要逐步培养学生的这种归纳概括能力。二、在“概念”和“公式”教学中,培养学生概括能力数学公式反

4、映了事物内部和外部的关系,是我们更好地理解事物的本质和内涵的依据,也是一个由具体到抽象的过程。在教学中教师要注意培养学生对数学概念的概括能力,这样才能使学生不仅知道概念,更重要的是怎么把具体的概念用到抽象的数学解题过程中。比如说,学习“棱柱”的时候,可以分几个步骤:1、先举出一些物体,如三棱镜、书本等,让学生通过观察找出这些物体的共同点(主要是线面的关系)。2、通过抽象,提出物体本质属性的各种猜想和疑问,运用转化、举反例等方法对于题设进行证明和推断,肯定或否定某些共同属性,以确认其本质属性。3、让学生举出实例,将上述本质属性类比推广到同类事物,概括形成棱柱的

5、概念,并用定义表示。在这个过程中,可将零散的、杂乱的知识系统化、条理化,概括成带有规律性的结论,以促进学生概括能力的提高。公式的应用是对学生将具体的抽象到解题中的一个应用,对公式的概括能力也是非常重要的。在教学中不免存在学生记不住公式或记住公式不会应用的现象。如在“学习三角函数”的时候,对诱导公式的记忆就使很多学生感到困难。教师可以通过分析概括,把诱导公式概括为十个字:“奇变偶不变,符号看象限”。这样便于记忆,学生理解起来也会减少不少麻烦。又如学习排列组合、二项式定理时:加法原理、乘法原理各适用于什么情形?有什么特点?可以归纳为:“加法分类,类类独立;乘法分

6、步,步步相关”。三、在类比和联想中,培养学生的抽象概括能力数学的完整性和严密性,使得数学结论和方法都具有相关性和相似性,在课堂教学中教师要充分利用这些相关性和相似性,采用类比和联想的方法,才能让学生自己探索和发现许多新的结论或新的方法。在教学中教师常常让学生根据已有的公式、性质,类比、猜想未知的公式和性质。先类比,然后提出问题,最后给予证明。这样得出的结论不仅便于学生记忆,学生通过这些活动,不仅挖掘了自己的潜能,增强了学习的自信心,提高了学习数学的兴趣,更享受到了成功的喜悦,为今后的创造性学习打下了良好的基础。比如说在解高次不等式的时候,可以引导学生联想一元

7、二次不等式的结构和解集的形式,概括出不等式相同的结构特征,引导学生运用一元二次不等式的思维方法,制订各自的解题策略,从而明确解集仅与二次方程式的两根、抛物线的开口方向有关。例如:(x2-3x+2)(x2-2x-3)<0的左边多项式的根据依次是-1、1、2、3。在数轴上依次标出这些根,并类比二次不等式的解集为(-1,1)∪(2,3)。在解题后教师要引导学生概括出每题的解题过程中涉及的常用思想和方法,对解题过程有个反思,学会抽象地概括。总之,数学抽象概括能力是一种综合能力,需要一个长期的培养过程,更需要学生的亲身参与。教师要在数学教学中通过设计恰当的教学模式,对

8、学生抽象概括能力的培养施以积极的影响,切实地培养学生

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。