空间自相关统计量

空间自相关统计量

ID:25606617

大小:66.34 KB

页数:4页

时间:2018-11-21

空间自相关统计量_第1页
空间自相关统计量_第2页
空间自相关统计量_第3页
空间自相关统计量_第4页
资源描述:

《空间自相关统计量》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、空间自相关的测度指标1全局空间自相关全局空间自相关是对属性值在整个区域的空间特征的描述[8]。表示全局空间自相关的指标和方法很多,主要有全局Moran’sI、全局Geary’sC和全局Getis-OrdG[3,5]都是通过比较邻近空间位置观察值的相似程度来测量全局空间自相关的。全局Moran’sI全局Moran指数I的计算公式为:其中,n为样本量,即空间位置的个数。xi、xj是空间位置i和j的观察值,wij表示空间位置i和j的邻近关系,当i和j为邻近的空间位置时,wij=1;反之,wij=0。全局Moran指数I的取值范围为[-1,1]。对于Moran指数,可以用标准化统

2、计量Z来检验n个区域是否存在空间自相关关系,Z的计算公式为:=E(Ii)和VAR(Ii)是其理论期望和理论方差。数学期望EI=-1/(n-1)。当Z值为正且显著时,表明存在正的空间自相关,也就是说相似的观测值(高值或低值)趋于空间集聚;当Z值为负且显著时,表明存在负的空间自相关,相似的观测值趋于分散分布;当Z值为零时,观测值呈独立随机分布。全局Geary’sC全局Geary’sC测量空间自相关的方法与全局Moran’sI相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:全局Moran’sI的交叉乘积项比较的是邻近空间位置的观察值与均值

3、偏差的乘积,而全局Geary’sC比较的是邻近空间位置的观察值之差,由于并不关心xi是否大于xj,只关心xi和xj之间差异的程度,因此对其取平方值。全局Geary’sC的取值范围为[0,2],数学期望恒为1。当全局Geary’sC的观察值<1,并且有统计学意义时,提示存在正空间自相关;当全局Geary’sC的观察值>1时,存在负空间自相关;全局Geary’sC的观察值=1时,无空间自相关。其假设检验的方法同全局Moran’sI。值得注意的是,全局Geary’sC的数学期望不受空间权重、观察值和样本量的影响,恒为1,导致了全局Geary’sC的统计性能比全局Moran’sI

4、要差,这可能是全局Moran’sI比全局Geary’sC应用更加广泛的原因。全局Geti-OrdG 全局Getis-OrdG与全局Moran’sI和全局Geary’sC测量空间自相关的方法相似,其分子的交叉乘积项不同,即测量邻近空间位置观察值近似程度的方法不同,其计算公式为:全局Getis-OrdG直接采用邻近空间位置的观察值之积来测量其近似程度,与全局Moran’sI和全局Geary’sC不同的是,全局Getis-OrdG定义空间邻近的方法只能是距离权重矩阵wij(d),是通过距离d定义的,认为在距离d内的空间位置是邻近的,如果空间位置j在空间位置i的距离d内,那么权重

5、wij(d)=1,否则为0。从公式中可以看出,在计算全局Getis-OrdG时,如果空间位置i和j在设定的距离d内,那么它们包括在分子中;如果距离超过d,则没有包括在分子中,而分母中则包含了所有空间位置i和j的观察值xi、xj,即分母是固定的。如果邻近空间位置的观察值都大,全局Getis-OrdG的值也大;如果邻近空间位置的观察值都小,全局Getis-OrdG的值也小。因此,可以区分“热点区”和“冷点区”两种不同的正空间自相关,这是全局Getis-OrdG的典型特性,但是它在识别负空间自相关时效果不好。全局Getis-OrdG的数学期望E(G)=W/n(n-1),当全局G

6、etis-OrdG的观察值大于数学期望,并且有统计学意义时,提示存在“热点区”;当全局Getis-OrdG的观察值小于数学期望,提示存在“冷点区”。假设检验方法同全局Moran’sI和全局Geary’sC。2局部空间自相关局部空间自相关统计量LISA的构建需要满足两个条件[9]:①局部空间自相关统计量之和等于相应的全局空间自相关统计量;②能够指示每个空间位置的观察值是否与其邻近位置的观察值具有相关性。相对于全局空间自相关而言,局部空间自相关分析的意义在于:①当不存在全局空间自相关时,寻找可能被掩盖的局部空间自相关的位置;②存在全局空间自相关时,探讨分析是否存在空间异质性;

7、③空间异常值或强影响点位置的确定;④寻找可能存在的与全局空间自相关的结论不一致的局部空间自相关的位置,如全局空间自相关分析结论为正全局空间自相关,分析是否存在有少量的负局部空间自相关的空间位置,这些位置是研究者所感兴趣的。由于每个空间位置都有自己的局部空间自相关统计量值,因此,可以通过显著性图和聚集点图等图形将局部空间自相关的分析结果清楚地显示出来,这也是局部空间自相关分析的优势所在[3,5]。局部Moran’sI为了能识别局部空间自相关,每个空间位置的局部空间自相关统计量的值都要计算出来,空间位置为i的局部Moran’sI的

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。