支持向量机在地铁车站深基坑围护结构变形预测的应用

支持向量机在地铁车站深基坑围护结构变形预测的应用

ID:25404869

大小:52.50 KB

页数:5页

时间:2018-11-20

支持向量机在地铁车站深基坑围护结构变形预测的应用_第1页
支持向量机在地铁车站深基坑围护结构变形预测的应用_第2页
支持向量机在地铁车站深基坑围护结构变形预测的应用_第3页
支持向量机在地铁车站深基坑围护结构变形预测的应用_第4页
支持向量机在地铁车站深基坑围护结构变形预测的应用_第5页
资源描述:

《支持向量机在地铁车站深基坑围护结构变形预测的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、支持向量机在地铁车站深基坑围护结构变形预测的应用摘要:利用支持向量机理论对深基坑支护结构的变形量进行分析和预测,建立了预测支护结构最大变形量的支持向量机预测模型。预测结果表明,该预测模型有很高的预测精度,并应用于南京市某地铁站实际工程。关键词:基坑开挖 变形预测 支持向量机(SupportVectorMachine)0引言目前,在城市基坑工程设计与施工中,对基坑变形控制要求越来越严格。基坑围护结构变形使外侧地层发生损失而引起地面沉降,增加了外侧土体向坑内的位移和相应的坑内隆起。同样的地质和埋深条件下,深基坑周围地层变形范围

2、及幅度,因围护结构的变形不同有很大差别,围护结构变形往往是引起周围地层移动的重要原因。能否比较准确的预测出围护结构的变形对基坑工程的设计与施工都有极其重要的意义。但是在地铁车站深基坑开挖过程中,支护结构的变形与其影响因素之间存在极其复杂的非线性关系。对于这一非线性关系的模拟和识别,有很多种方法,如模糊数学、BP神经网络和遗传算法等。这些方法都有一些不令人满意的地方,如BP神经网络则有过拟合、大样本和易陷入局部极值等问题。近年来,基于统计学习理论的支持向量机算法具有完备的理论基础和严格的理论体系,在很多领域获得成功的应用。其

3、良好的小样本、非线性及升维及泛化性好等许多优良的特性引起了岩土工程界的重视。本文应用支持向量机算法,建立预测模型来预测支护结构的变形量,并将之应用到南京地铁二号线逸仙桥站深基坑西侧端头井围护结构变形值的预测中。1支持向量机原理[1,2]SVR算法的基础主要是ε不敏感函数(ε-insensitivefunction)和核函数算法。若将拟合的数学模型表达为多维空间的某一曲线,则根据ε不敏感函数所得的结果,就是包括该曲线和训练点的“ε管道”。在所有样本点中,只有分布在“管壁”上的那一部分样本点决定管道的位置。这一部分训练样本称为

4、“支持向量”(supportvectors)。为适应训练样本集的非线形,传统的拟合方法通常是在线性方程后面加高阶项。此法诚然有效,但由此增加的可调参数未免增加了过拟合的风险。SVR采用核函数解决这一矛盾。用核函数代替线形方程中的线性项可以使原来的线性算法“非线性化”,即能作非线性回归。引进核函数达到了“升维”的目的。支持向量机理论只考虑高维特征空间的点积运算K(xi,xj)=Φ(xi)·Φ(xj),而不直接使用函数Φ,从而巧妙地解决了因Φ未知而)、支撑的弹性系数(MN/m)、围护结构的刚度(MN·m2)、土体的黏聚力C(k

5、Pa)和摩擦角?、基坑的开挖深度(m)、围护结构的入土深度(m);yi是一维向量,其值为基坑围护结构的最大水平位移(mm)。2)选择核函数及参数值。常用的核函数有多项式核函数、径向基函数(RBF)核函数和sigmoid核函数。3)利用MATLAB语言所带的优化工具箱训练模型样本是否满足精度要求,若达不到精度可转到步骤(2)重新选择核函数及参数。4)模型预测精度达到要求后即进行基坑支护结构的变形预测。(责任编辑:)2.3支持向量机预测模型的具体应用2.3.1构建SVM样本集本文利用相关文献及已知的南京基坑数据资料[6]建立支

6、持向量机预测模型的训练样本,该样本如表1所示。本文尝试应用该模型,预测南京地铁二号线11标段逸仙桥站深基坑西侧端头井的地下连续墙的最大变形。该端头井作为区间盾构始发井,是本标段控制工期的节点工程。根据《南京地铁二号线逸仙桥站岩土工程勘察报告》,勘控范围内,①层为近期人工填土,成份复杂,局部较厚,不均匀,透水性相对较好。②层全新世冲积物,工程地质性质较差,其中②-2b4层软土厚度大,密度低,压缩性高,为不良软土。②-2c3及②-3c2-3层粉土易受扰动,水稳性差。③层一般沉积土工程地质性质较好。下伏基岩为极软岩。本文计算选取

7、基坑开挖的代表性土层②-3c2-3粉土:C=15kPa,?Φ=18·3°;该车站围护结构为厚800mm的地下连续墙,刚度为665.6MN·m2,端头井开挖深度为23.8m,入土深度为18.02m,共设6道Φ609×16钢管支撑,其弹性系数为57.34MN/m。2.3.2SVM的学习训练首先进行核函数的选取,通过对多项式核函数、径向基函数(RBF)核函数、Sigmoid核函数的比较分析,发现σ=300的径向基函数核函数比较适合地铁车站深基坑围护结构最大变形值的预测问题。然后通过不同的参数的试验,发现C=10000,经过学习训

8、练,得到13个支持向量,各个支持向量的αi-α*i及其对应的样本序号见表2,相应的m,而在施工过程中实测值为40mm,其相对误差仅为6.81%;SVM实测值与预测值对比图如图1。为了与SVM方法进行对比,用BP神经网络对表1数据进行训练,得出最大变形值预测结果为31.267mm,其相对误差约为21.83

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。