支持向量机在地铁车站深基坑围护结构变形预测的应用论文

支持向量机在地铁车站深基坑围护结构变形预测的应用论文

ID:25194907

大小:49.50 KB

页数:4页

时间:2018-11-18

支持向量机在地铁车站深基坑围护结构变形预测的应用论文_第1页
支持向量机在地铁车站深基坑围护结构变形预测的应用论文_第2页
支持向量机在地铁车站深基坑围护结构变形预测的应用论文_第3页
支持向量机在地铁车站深基坑围护结构变形预测的应用论文_第4页
资源描述:

《支持向量机在地铁车站深基坑围护结构变形预测的应用论文》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、支持向量机在地铁车站深基坑围护结构变形预测的应用论文.freel)、支撑的弹性系数(MN/m)、围护结构的刚度(MN·m2)、土体的黏聚力C(kPa)和摩擦角、基坑的开挖深度(m)、围护结构的入土深度(m);yi是一维向量,其值为基坑围护结构的最大水平位移(mm)。2)选择核函数及参数值。常用的核函数有多项式核函数、径向基函数(RBF)核函数和sigmoid核函数。3)利用MATLAB语言所带的优化工具箱训练模型样本是否满足精度要求,若达不到精度可转到步骤(2)重新选择核函数及参数。4)模型预测精度达到要求后即进行基坑支护结构的变形预测。2.3支持向量机预测模型的具体应用2.3.1构建SVM

2、样本集本文利用相关文献及已知的南京基坑数据资料6建立支持向量机预测模型的训练样本,该样本如表1所示。本文尝试应用该模型,预测南京地铁二号线11标段逸仙桥站深基坑西侧端头井的地下连续墙的最大变形。该端头井作为区间盾构始发井,是本标段控制工期的节点工程。根据《南京地铁二号线逸仙桥站岩土工程勘察报告》,勘控范围内,①层为近期人工填土,成份复杂,局部较厚,不均匀,透水性相对较好。②层全新世冲积物,工程地质性质较差,其中②-2b4层软土厚度大,密度低,压缩性高,为不良软土。②-2c3及②-3c2-3层粉土易受扰动,水稳性差。③层一般沉积土工程地质性质较好。下伏基岩为极软岩。本文计算选取基坑开挖的代表性土

3、层②-3c2-3粉土:C=15kPa,Φ=18·3°;该车站围护结构为厚800mm的地下连续墙,刚度为665.6MN·m2,端头井开挖深度为23.8m,入土深度为18.02m,共设6道Φ609×16钢管支撑,其弹性系数为57.34MN/m。2.3.2SVM的学习训练首先进行核函数的选取,通过对多项式核函数、径向基函数(RBF)核函数、Sigmoid核函数的比较分析,发现σ=300的径向基函数核函数比较适合地铁车站深基坑围护结构最大变形值的预测问题。然后通过不同的参数的试验,发现C=10000,经过学习训练,得到13个支持向量,各个支持向量的αi-α*i及其对应的样本序号见表2,相应的m,而在

4、施工过程中实测值为40mm,其相对误差仅为6.81%;SVM实测值与预测值对比图如图1。为了与SVM方法进行对比,用BP神经网络对表1数据进行训练,得出最大变形值预测结果为31.267mm,其相对误差约为21.83%。3结论1)由于支持向量机的优良特性,特别适合于地铁基坑施工中那些模糊、随机、不确定性、样本数有限和非线形的复杂问题。因此,基于统计学习理论的支持向量机方法在岩土工程中具有广泛的应用前景。2)支持向量机具有完备的理论基础和严格的理论体系,SVM算法最终转化为二次寻优问题。从理论上说,得到的将是全局最优解,有效避免了神经网络易陷入的局部极值问题。同时通过非线性变换和核函数巧妙解决了高

5、维数问题,使得其算法复杂度与样本维数无关,加速了训练学习速度。另外,它能根据有限的样本信息在模型的复杂性和学习能力之间寻求最佳折衷,保证其有较好的泛化性能。3)支持向量机的核函数参数以及惩罚参数C的选择,将直接影响到支持向量机的学习效率和推广能力。但支持向量机算法并没有给出易实现的选择内积核函数参数的一般办法。本文通过对核函数参数和惩罚参数C的测试,可以得到较合适的参数值。4)无论是SVM方法还是BP神经网络方法都属于参数预报方法,其预测精度在很大程度上依赖于预测模型的输入和输出参数的代表性。基坑围护结构最大变形的支持向量机预测模型的可靠性和准确性,依赖对其各种影响因素的准确分析。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。