资源描述:
《二面角的求法(总结)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二面角的求法(总结)探究准备:一、忆一忆:1、二面角的概念,二面角的平面角的概念,二面角的大小范围;2、三垂线定理、平面的法向量。答:1、二面角是指从一条直线出发的两个半平面所组成的图形;平面角是指以二面角的棱上一点为端点,在两个半平面内分别做垂直于棱的两条射线,这两条射线所成的角就叫做该二面角的平面角。二面角的大小范围:[00,1800];2、三垂线定理:平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它就和这条斜线垂直;平面的法向量:直线L垂直平面α,取直线L的方向向量,则这个方向向量叫做平面
2、α的法向量。(显然,一个平面的法向量有无数个,它们是共线向量)探究准备:二、想一想:1、怎样做出二面角的平面角?答:1、做二面角的平面角主要有3种方法:(1)、定义法:在棱上取一点,在两个半平面内作垂直于棱的2条射线,这2条所夹的角;(2)、垂面法:做垂直于棱的一个平面,这个平面与2个半平面分别有一条交线,这2条交线所成的角;(3)、三垂线法:过一个半平面内一点(记为A)做另一个半平面的一条垂线,过这个垂足(记为B)再做棱的垂线,记垂足为C,连接AC,则∠ACB即为该二面角的平面角。ABCαβαβαβγ2、
3、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系?探究准备:答:相等或互补αβm互补αβ相等m探究一:试一试:例1、如图:在三棱锥S-ABC中,SA⊥平面ABC,AB⊥BC,DE垂直平分SC,分别交AC、SC于D、E,且SA=AB=a,BC=a.求:平面BDE和平面BDC所成的二面角的大小。SAECBD分析:1、根据已知条件提供的数量关系通过计算证明有关线线垂直;2、利用已得的垂直关系找出二面角的平面角。解:如图:∵SA⊥平面ABC,∴SA⊥AB,SA⊥AC,SA⊥BD;于是SB==a又B
4、C=a,∴SB=BC;∵E为SC的中点,∴BE⊥SC又DE⊥SC故SC⊥平面BDE可得BD⊥SC又BD⊥SA∴BD⊥平面SAC∴∠CDE为平面BDE和平面BDC所成二面角的平面角。∵AB⊥BC,∴AC===a在直角三角形SAC中,tan∠SCA==∴∠SCA=300,∴∠CDE=900--∠SCA=600解毕。议一议:刚才的证明过程中,是用什么方法找到二面角的平面角的?请各小组讨论交流一下。SECABD探究二:试一试例二:如图:直四棱柱ABCD-A1B1C1D1,底面ABCD是菱形,AD=AA1,∠DAB=
5、600,F为棱AA1的中点。求:平面BFD1与平面ABCD所成的二面角的大小。A1D1C1B1ADCBF要求:1、各人思考;2、小组讨论;3、小组交流展示;4、总结。A1D1C1CB1BDAPF如图:延长D1F交DA的延长线于点P,连接PB,则直线PB就是平面BFD1与平面ABCD的交线。∵F是AA1的中点,∴可得A也是PD的中点,∴AP=AB,又∵∠DAB=600,且底面ABCD是菱形,∴可得正三角形ABD,故∠DBA=600,∵∠P=∠ABP=300,∴∠DBP=900,即PB⊥DB;又因为是直棱柱,∴
6、DD1⊥PB,∴PB⊥面DD1B,故∠DBD1就是二面角D1-PB-D的平面角。显然BD=AD=DD1,∴∠DBD1=450。即为所求.解毕。解法一:A1D1C1B1FADCBPE解法二:如图:延长D1F交DA的延长线于点P,连接PB,则直线PB就是平面BFD1与平面ABCD的交线;因为是直棱柱,所以AA1⊥底面ABCD,过A做AE⊥PB,垂足为E,连接EF,由三垂线定理可知,EF⊥PB,∴∠AEF即为二面角D1-PB-D的平面角;同解法一可知,等腰△APB,∠P=300,Rt△APB中,可求得AE=1,(
7、设四棱柱的棱长为2)又AF=1,∴∠AEF=450,即为所求。思考:这种解法同解法一有什么异同?解法三:法向量法:建系如图:设这个四棱柱各棱长均为2.则D(0,0,0)D1(0,0,2)B(1,,0)F(-1,,1)∴=(-2,0,1)=(1,,-2)显然,就是平面ABCD的法向量,再设平面BDD1的一个法向量为向量=(x0,y0,z0)。则⊥且⊥∴2x0+0y0-z0=0且x0+y0-2z0=0令x0=1可得z0=2,y0=,即=(1,,2)设所求二面角的平面角为θ,则COSθ==,所以所求二面角大小为4
8、50解毕A1D1C1B1ABCDxyzF解法四:A1D1C1B1FCBDA如图:由题意可知,这是一个直四棱柱,△BFD1在底面上的射影三角形就是△ABD,故由射影面积关系可得COSθ=SABD/SBFD1(θ是所求二面角的平面角)以下求面积略。点评:这种解法叫做“射影面积法”在选择和填空题中有时候用起来会很好总一总:求二面角的方法你都学会了哪些?每一种方法在使用上要注意什么问题?请同学们先自己思考,然后小组内交流