欢迎来到天天文库
浏览记录
ID:24884080
大小:351.50 KB
页数:4页
时间:2018-11-16
《如何求解二次函数中的面积最值问题》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、如何求解二次函数中的面积最值问题从近几年的各地中考试卷来看,求面积的最值问题在压轴题中比较常见,而且通常与二次函数相结合.使解题具有一定难度,本文以一道中考题为例,介绍几种不同的解题方法,供同学们在解决这类问题时参考.题目(重庆市江津区)如图1,抛物线y=-x2+bx+c与x轴交于A(1,0),B(-3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴于C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)如图2,在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点
2、P的坐标及△PBC的面积最大值;若没有,请说明理由.解答(1)抛物线解析式为y=-x2-2x+3;(2)Q(-1,2);下面着重探讨求第(3)小题中面积最大值的几种方法.一、补形、割形法几何图形中常见的处理方式有分割、补形等,通过对图形的这些直观处理,一般能辅助解题,使解题过程简捷、明快.此类方法的要点在于把所求图形的面积进行适当的补或割,变成有利于表示面积的图形.方法一如图3,设P点(x,-x2-2x+3)(-33、三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,本题解答如下:解如图6,作PE⊥x轴于点E,交BC于点F.设P点(x,-x2-2x+3)(-34、析式是y=x+3,过点P作BC的平行线l,从而可设直线l的解析式为:y=x+b. =.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE⊥x轴交于点E,交BC于点F,怍PM⊥BC于点M.设P点(x,-x2-2x+3)(-3
3、三条直线,外侧两条直线之间的距离叫△ABC的“水平宽”(a),中间的这条直线在△ABC内部线段的长度叫△ABC的“铅垂高(h)”,我们可得出一种计算三角形面积的另一种方法:S△ABC=ah,即三角形面积等于水平宽与铅垂高乘积的一半.根据上述方法,本题解答如下:解如图6,作PE⊥x轴于点E,交BC于点F.设P点(x,-x2-2x+3)(-34、析式是y=x+3,过点P作BC的平行线l,从而可设直线l的解析式为:y=x+b. =.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE⊥x轴交于点E,交BC于点F,怍PM⊥BC于点M.设P点(x,-x2-2x+3)(-3
4、析式是y=x+3,过点P作BC的平行线l,从而可设直线l的解析式为:y=x+b. =.四、三角函数法本题也可直接利用三角函数法求得.解如图8,作PE⊥x轴交于点E,交BC于点F,怍PM⊥BC于点M.设P点(x,-x2-2x+3)(-3
此文档下载收益归作者所有