多面体外接球半径常见的5种求法

多面体外接球半径常见的5种求法

ID:24376894

大小:166.00 KB

页数:3页

时间:2018-11-14

多面体外接球半径常见的5种求法_第1页
多面体外接球半径常见的5种求法_第2页
多面体外接球半径常见的5种求法_第3页
资源描述:

《多面体外接球半径常见的5种求法》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、多面体外接球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为,高为,则有∴正六棱柱的底

2、面圆的半径,球心到底面的距离.∴外接球的半径..小结本题是运用公式求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.B.C.D.解设正四棱柱的底面边长为,外接球的半径为,则有,解得.∴.∴这个球的表面积是.选C.小结本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧面两两垂直,且侧棱长均为,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为的正方体,于是正方体的外接球就是三棱锥的外接球

3、.设其外接球的半径为,则有.∴.故其外接球的表面积.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.寻求轴截面圆半径法例4正四棱锥的底面边长和各侧棱长都为,点都在同一球面上,则此球的体积为.解设正四棱锥的底面中心为,外接球的球心为,如图1所示.∴由球的截面的性质,可得.又,∴球心必在所在的直线上.∴的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在中,由,得.∴.∴是外接圆的半径,也是外接球的半径.故.小结根据题意,我们可以选择最

4、佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确定球心位置法例5在矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为A.B.C.D.解设矩形对角线的交点为,则由矩形对角线互相平分,可知.∴点到四面体的四个顶点的距离相等,即点为四面体的外接球的球心,如图2所示.∴外接球的半径.故.选C.

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。