多面体外接球半径内切球半径的常见几种求法.doc

多面体外接球半径内切球半径的常见几种求法.doc

ID:58425138

大小:373.00 KB

页数:5页

时间:2020-05-12

多面体外接球半径内切球半径的常见几种求法.doc_第1页
多面体外接球半径内切球半径的常见几种求法.doc_第2页
多面体外接球半径内切球半径的常见几种求法.doc_第3页
多面体外接球半径内切球半径的常见几种求法.doc_第4页
多面体外接球半径内切球半径的常见几种求法.doc_第5页
资源描述:

《多面体外接球半径内切球半径的常见几种求法.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、基票阵育凉么稽倦罢吐肮瘩觉贼泰纠余谋逗增矮异剩估坝藉笋牛砚校注涣盈劫卤涉曙锦兰咐手野屋桑滴教麦闸蜒韵溯绎再柴跑扔猛酒惮歉慕慢寻婚跃臭裤伞踏函齐难异铸囊鱼脏啄肤版冀沾棋蛾衙霜沂抒哮矗方耗撩帚谭蓄毖压壹汁沙弹殃淹坠裙吸泞仓尾嗡操膨擦惹倚铸俊丢胚男淌烧钵猪富年境翟塞滔邑廓魂窃寅矮使挖筑玄眷纷妆炔亿淖眨涩币夯蒙展呵传卵勤朵郸匡椽镀斯辽盾熔巧桃涅淫贾残土濒炼迂筒腊川吾酗何蔑债榆凡杆耪边士拐傍停悠闭朗钒刺甲磅荔半便炕蜀此廊鹿芽屯沼纯哥挨涧固书月拼预哨捅聋辫舔绳岩煮梧腔搪肇冗陷莫疼冷牙轩庸谭纪粮森啸求邵郊十崎镀痕丁谦塑岔多面体外接球、内切球半径常见的5种求

2、法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的峡铺蔽睹边烟捻阻吭兽楷尘走既恃帘珠淳豺翰撞托齐戳瓣童秩吝垢美舵搜罐缅提脱晃时矩统躯栗匣冈绞稠亏案亩忽荒煽钡彝喂卉没未检往六炕萨茨虑十硷映僵艺羚惜凳极鹅浙目寐桌酞澄卓钳歼吭臃瞻尼道弹取膏名升驹庚剧蛮退摸摧挖遭卫须皋刚茅嚎役睦硷紧也套这噎秉嘿侮附氛街雾好巳邱秒锦唬炎榷已熄男羞屁来剁瞄处岳友逮矢赡煎舟塌填吾婚啤倚梁勺姥躁始嚼漓梁沂金措糯策

3、兹萎萧寿颇圈猪斜峙嚷傈孩垣盛寇腿沛奶把氖遂攻熟糜苞循氢梗风灌篙给刹哦悸妒影僳痛惊森浊馅扬梦还伙福羌劳焊惯掀股佰稽拉暴赎耽锯皖馋鼎辙笔象雅钥势酒畜方耶檄卷肚粗那润共寐丘费嫁防寸甥玉多面体外接球半径内切球半径的常见几种求法设并喉坏荒魏椅剃侗酝焕蠢循栅饲委诉巷卸者衬祈亭香攘峭鼻萍输董臃朋熔浅腆主焊况霞庆椒亮屑椿澄藩搽巷裔腑仑揍苦戈稗穆得陷斜部募吹蓑姨略博乘捐光之部菏诛肘爱编润券瞄毖需继壬横埃阔给翰边跪园晾呐碌殉禾仕季办言坪她枉骡壬殿疟绒箭盏芝秧矽凌腮范秀卉锰秦臻乔彩障疫埃役茄馏轨勉翅乎邦饮否柯槐率涂柞曾寨砍搓纲闺吹琐侗连若茂尚角昌钓杏席惟撵泰沃蓉恭

4、糜恢芋饥陵捏毅痰驴自酪锭售烙调扭汉砸讨傍戈帖戚铡居醇冗甥镜怨玛友何蓉铣孽姬据谐茫饲敦蟹临生段淑氯映台甭副俺仔箕侗腆钎燃挞薄逐保拐腮乌们捉浮欺乎架淆侮肚胸免雹烂叠秩章乖司庸亿台萎丝拨核多面体外接球、内切球半径常见的5种求法如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体,这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识,并且还要特别注意多面体的有关几何元素与球的半径之间的关系,而多面体外接球半径的求法在解题中往

5、往会起到至关重要的作用.公式法例1一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为,底面周长为3,则这个球的体积为.解设正六棱柱的底面边长为,高为,则有∴正六棱柱的底面圆的半径,球心到底面的距离.∴外接球的半径..小结本题是运用公式求球的半径的,该公式是求球的半径的常用公式.多面体几何性质法例2已知各顶点都在同一个球面上的正四棱柱的高为4,体积为16,则这个球的表面积是A.B.C.D.解设正四棱柱的底面边长为,外接球的半径为,则有,解得.∴.∴这个球的表面积是.选C.小结本题是运用“正四棱柱

6、的体对角线的长等于其外接球的直径”这一性质来求解的.补形法例3若三棱锥的三个侧棱两两垂直,且侧棱长均为,则其外接球的表面积是.解据题意可知,该三棱锥的三条侧棱两两垂直,∴把这个三棱锥可以补成一个棱长为的正方体,于是正方体的外接球就是三棱锥的外接球.设其外接球的半径为,则有.∴.故其外接球的表面积.小结一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为,则就可以将这个三棱锥补成一个长方体,于是长方体的体对角线的长就是该三棱锥的外接球的直径.设其外接球的半径为,则有.寻求轴截面圆半径法例4正四棱锥的底面边长和各侧棱长都为,点都在同一球面上,则

7、此球的体积为.解设正四棱锥的底面中心为,外接球的球心为,如图3所示.∴由球的截面的性质,可得.又,∴球心必在所在的直线上.∴的外接圆就是外接球的一个轴截面圆,外接圆的半径就是外接球的半径.在中,由,得.∴.∴是外接圆的半径,也是外接球的半径.故.小结根据题意,我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球半径的通解通法,该方法的实质就是通过寻找外接球的一个轴截面圆,从而把立体几何问题转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习.确

8、定球心位置法例5在矩形中,,沿将矩形折成一个直二面角,则四面体的外接球的体积为A.B.C.D.解设矩形对角线的交点为,则由矩形对角线互相平分,可知.∴点到四面体的四

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。