二次函数顶点对称轴,解析式

二次函数顶点对称轴,解析式

ID:24290560

大小:134.00 KB

页数:4页

时间:2018-11-13

二次函数顶点对称轴,解析式_第1页
二次函数顶点对称轴,解析式_第2页
二次函数顶点对称轴,解析式_第3页
二次函数顶点对称轴,解析式_第4页
资源描述:

《二次函数顶点对称轴,解析式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《二次函数的图象》教案一、教学目标(一)知识目标1.使学生会用描点法画出二次函数的图象;2.使学生会用配方法确定抛物线的顶点和对称轴(对于不升学的学生,只要求会用公式确定抛物线的顶点和对称轴);3.使学生进一步理解二次函数与抛物线的有关概念;4.使学生会用待定系数法由已知图像上三点的坐标求二次函数的解析式.(二)能力目标1.培养学生分析问题、解决问题的能力;2.向学生进行配方法和待定系数法的渗透,使学生能初步掌握;(三)情感目标1.向学生进行事物间是互相联系及互相转化的辩证唯物主义观点教育.2.通过二次函数的进一步研究,让学生认识到二次函数的对称轴、顶点坐标与二次项系数、一次项系数及常数项之间

2、的内在联系的数学美及和谐的数学美.二、教学方法教师采用比较法、观察法、归纳总结法本节重点是求二次函数解析式及将二次函数的解析式配方,确定抛物线的顶点、对称轴等特征,进而画出这条抛物线,在学习中,学生不要死记硬背,要运用数形结合思想,熟练画出抛物线草图,结合图像研究函数的性质以及不同图像之间的相互关系.三、重点·难点·疑点及解决办法1.教学重点:用配方法确定抛物线的顶点坐标求对称轴及用待定系数法由已知图像上三点的坐标求二次函数的解析式.因为它们是画出二次函数的图像的基础.2.教学难点:配方法的推导过程,因为虽然这种方法在前面学习一元二次方程时介绍过,但是在配方的过程中需要考虑加、减的数,对学生有

3、一定的难度.3.教学疑点:顶点式与一般式如何转化四、教学媒体三角板小黑板五、教学设计思路1.出示一组练习,导入新课.2.“如何画的图像?”教师提问,让学生去讨论、发现:要写成的形式,找出对称轴,引入由一般式化成顶点式,推导出顶点坐标公式.3.学生练习,为了强化巩固.六、教学步骤提问:说出下列抛物线的开口方向、对称轴与顶点坐标:(1)(2)(3)(4)(5)(出示幻灯)通过这些练习题,使学生对以前的知识加以复习巩固,以便这节课的应用.这几个问题可找层次较低的学生回答,由其他同学给予评价.我们已画过二次函数的图像,画它的图象的第一步是干什么?(列表)列表时我们是怎样取值的呢?(先确定中心值)若我们

4、要画二次函数的图象应怎么办呢?学生讨论得到:把二次函数转化成的形式再加以研究.提问:怎样能把二次函数转化成的形式呢?我们先来看几个练习题:(出示幻灯)填空:(1);(2);(3);(4);先由学生自己填,若在填的时候有问题,可以互相讨论之后再填.然后由学生回答答案,对一下,关键是由学生来总结:这几个空是怎样填上的?总结规律:当二次项的系数为1时,常数项须配一次项系数一半的平方.提问:当二次项的系数不为1时,应怎么办呢?答:利用提公因式法,首先把二次项的系数化成1,再用上述方法.下面,我们就一起来看一个具体的问题:(出示幻灯)画函数的图像,并指出它的开口方向、对称轴和顶点坐标.分析:首先要用配方

5、法将函数写成的形式;然后,确定函数图像的开口方向、对称轴与顶点坐标;接下来,利用函数的对称性列表、描点、连线.这里的关键步骤是用配方法把函数改写成的形式,应按怎样的方式来做呢?(教师边提问、边讲解、边板书)首先,把等号右边的(即二次项的系数)提出来,使二次项的系数为1,得;然后,把括号内的部分配成一个完全平方(即先加,再减一次项系数的一半的平方),得;最后去掉中括号,得.这就与的形式一样,就可以由学生独立完成余下的部分了.注意:描点画图时,要参照已知抛物线的特点,一般先找出顶点,并且用虚线画出对称轴,然后再对称描点,最后,用平滑曲线顺次连结各点.画完图之后,可让学生观察图像,思考:提问:1.这

6、条抛物线与哪条形如的抛物线形状相同?为什么?答:与抛物线的形状相同,因为若两条抛物线形状相同,则。的值就相同.2.它是抛物线经过怎样的移动得到的?这个问题可根据学生的层次决定问还是不问,关于这个问题的回答可以像书上一样,即:将抛物线平行移动,顶点从原点移动到(6,3)而成的,也可以按照沿轴移动的方式来回答.上面,我们研究了如何把一个具体的二次函数通过配方的方法来加以研究,对于一般的二次函数应怎样解决呢?(出示幻灯)例1通过配方求抛物线的对称轴和顶点坐标.可先让学生仿照前面解决的方式来做,找一名同学板书,然后视情况加以讲解,补充和纠正.最后,加以总结,形成规律:(板书)抛物线的对称轴:,顶点坐标

7、是,让有能力的学生掌握推导过程,层次较差的只要记住公式就可以了。我们已经学过用待定系数法确定正比例函数与一次函数的解析式,需要知道图像上的几点才能利用待定系数法来确定函数的解析式呢?试想,关于一般的二次函数,已知函数图像上的几点,可以用待定系数法来求出这个函数的解析式呢?下面,我们就来看今天的第二个例题:(出示幻灯)例2已知一个二次函数的图像经过三点.求这个函数的解析式.根据此题的程度可由学生自主

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。