欢迎来到天天文库
浏览记录
ID:23770548
大小:535.00 KB
页数:8页
时间:2018-11-10
《概率论和数理统计测试题二》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库。
1、《概率论与数理统计》测试题二一、填空题(每小题3分,共15分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为__________.2.设随机变量服从泊松分布,且,则______.3.设随机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_________.4.设随机变量相互独立,且均服从参数为的指数分布,,则_________,=_________.5.设总体的概率密度为.是来自的样本,则未知参数的极大似然估计量为_________.二、单项选择题(每小题3分,共15分)1.设为三个事件,且相互独立,则以
2、下结论中不正确的是(A)若,则与也独立.(B)若,则与也独立.(C)若,则与也独立.(D)若,则与也独立.()2.设随机变量的分布函数为,则的值为(A).(B).(C).(D).()3.设随机变量和不相关,则下列结论中正确的是(A)与独立.(B).(C).(D).()4.设离散型随机变量和的联合概率分布为若独立,则的值为(A).(A).(C)(D).()5.设总体的数学期望为为来自的样本,则下列结论中正确的是(A)是的无偏估计量.(B)是的极大似然估计量.(C)是的相合(一致)估计量.(D)不是的估计量.()三、(7分)已知一批产品
3、中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.五、(10分)设二维随机变量在区域上服从均匀分布.求(1)关于的边缘概率密度;(2)的分布函数与概率密度.xy012六、(10分)向一目标射击,目
4、标中心为坐标原点,已知命中点的横坐标和纵坐标相互独立,且均服从分布.求(1)命中环形区域的概率;(2)命中点到目标中心距离的数学期望.七、(11分)设某机器生产的零件长度(单位:cm),今抽取容量为16的样本,测得样本均值,样本方差.(1)求的置信度为0.95的置信区间;(2)检验假设(显著性水平为0.05).(附注)《概率论与数理统计》期末试题(2)与解答一、填空题(每小题3分,共15分)1.设事件仅发生一个的概率为0.3,且,则至少有一个不发生的概率为__________.2.设随机变量服从泊松分布,且,则______.3.设随
5、机变量在区间上服从均匀分布,则随机变量在区间内的概率密度为_________.4.设随机变量相互独立,且均服从参数为的指数分布,,则_________,=_________.5.设总体的概率密度为.是来自的样本,则未知参数的极大似然估计量为_________.解:1.即所以.2.由知即解得,故.3.设的分布函数为的分布函数为,密度为则因为,所以,即故另解在上函数严格单调,反函数为所以4.,故.5.似然函数为解似然方程得的极大似然估计为.二、单项选择题(每小题3分,共15分)1.设为三个事件,且相互独立,则以下结论中不正确的是(A)若
6、,则与也独立.(B)若,则与也独立.(C)若,则与也独立.(D)若,则与也独立.()2.设随机变量的分布函数为,则的值为(A).(B).(C).(D).()3.设随机变量和不相关,则下列结论中正确的是(A)与独立.(B).(C).(D).()4.设离散型随机变量和的联合概率分布为若独立,则的值为(A).(A).(C)(D).()5.设总体的数学期望为为来自的样本,则下列结论中正确的是(A)是的无偏估计量.(B)是的极大似然估计量.(C)是的相合(一致)估计量.(D)不是的估计量.()解:1.因为概率为1的事件和概率为0的事件与任何事
7、件独立,所以(A),(B),(C)都是正确的,只能选(D).SABC事实上由图可见A与C不独立.2.所以应选(A).3.由不相关的等价条件知应选(B).4.若独立则有YX,故应选(A).5.,所以是的无偏估计,应选(A).三、(7分)已知一批产品中90%是合格品,检查时,一个合格品被误认为是次品的概率为0.05,一个次品被误认为是合格品的概率为0.02,求(1)一个产品经检查后被认为是合格品的概率;(2)一个经检查后被认为是合格品的产品确是合格品的概率.解:设‘任取一产品,经检验认为是合格品’‘任取一产品确是合格品’则(1)(2).
8、四、(12分)从学校乘汽车到火车站的途中有3个交通岗,假设在各个交通岗遇到红灯的事件是相互独立的,并且概率都是2/5.设为途中遇到红灯的次数,求的分布列、分布函数、数学期望和方差.解:的概率分布为即的分布函数为.五、(10分)设二维随
此文档下载收益归作者所有