peirce- 逻 辑 代 数 中 的 几 个

peirce- 逻 辑 代 数 中 的 几 个

ID:22889954

大小:51.50 KB

页数:5页

时间:2018-11-01

peirce- 逻 辑 代 数 中 的 几 个 _第1页
peirce- 逻 辑 代 数 中 的 几 个 _第2页
peirce- 逻 辑 代 数 中 的 几 个 _第3页
peirce- 逻 辑 代 数 中 的 几 个 _第4页
peirce- 逻 辑 代 数 中 的 几 个 _第5页
资源描述:

《peirce- 逻 辑 代 数 中 的 几 个 》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、Peirce*逻辑代数中的几个1现代逻辑常被人们追溯到她的奠基人Frege(Lebniz是先驱者的地位);接着谈现代逻辑,人们会自然地找到其身后的Peano、Russell、orgon等人,他们之间的研究有相互启发与借鉴之处(有关贡献的纷争,可参看Kneale的《逻辑学的发展》),但主要还是相互独立的。Peirce就是其中一位极具独立性又最有创新的突出人物。身为著名数学家BenjaminPeirce(美国当时科学界的一权威)的儿子,Peirce本人也是一数学家,他对于代数在逻辑中的应用,得心应手,他甚至曾把“三段论”作为“联结词的代数”来研究。事实上,当时的符号逻辑就是逻辑代数(al

2、gebraoflogic)。2在Peirce看来,现代逻辑的研究实质上就是代数到逻辑的一场“类推(analogy)”,这种“类推”的前提,首先就是对代数中的符号的选择。不同的逻辑代数研究者都有着自己的选择,它们或者是从代数中原封不动地引入,或者是对代数中的相关符号做出逻辑意义上的改进。我们这里从Peirce逻辑代数研究中所运用的诸多符号中选取以下主要的几个,其中有的是Peirce本人独创性地提出,有的是Peirce同其他人同时提出和使用,有的是BPS传统所特有的:一、包含于(inclusionin或is或assmallas)符号“—<”(它是“≤”的一种方便的写法)的引入。这是最重要

3、的一点,它被Peirce本人多次提到,也被后来的研究者所普遍注意。但Peirce本人称,这一符号是由他和H.McColl同时引入的。Peirce这样定义“—<”:1、A—

4、l;der在1877年,McColl于1877年也相继独立地提出了这一用法,即不管相互间是否相斥,都使用“+(超文本阅读批判性发展出发,来做出自己的逻辑研究,他对逻辑的态度始终是不带偏激、不遗残缺的。表现在逻辑与数学的关系上,他早就提出,逻辑不能归结于数学,同样数学也不可能归结于逻辑;从而避免了走向Frege和Russell他们逻辑主义的死胡同。表现在对于一阶逻辑的态度上,Peirce并不像Quine(在Frege那里也隐含着)那样宣称,如果谁不知道一阶逻辑,谁就对逻辑毫无理解,全部逻辑也就只是一阶逻辑;在他看来自我同一的量化理论只是众多逻辑系统中的一个,他常常设法给出一阶逻辑的更为

5、深刻的基础并拓展这一范围,他说,说数学演示方法是唯一普遍有效的,这正是逻辑学家们视之为谬误而要避免的。再次,Peirce对待形式化的思想无疑包含了模型论的全部要义。Peirce有着自己的逻辑代数等演算,但他更注重它们的解释;他相信,真正重要的不是什么形式系统,而是潜在的所表达的实在(realities),我们可自由地根据不同场合选择我们不同的系统。最后,Peirce得益于早期在对逻辑代数研究中形成的符号逻辑系统目的即逻辑理论研究的思想,使他没有局限于使用代数的符号,而又采取了图表(graph)符号,进而形成了他著名的存在判断图表系统α、β、γ,并最终达到了“大逻辑”(abroadse

6、nseoflogic)--“符号(sign)”或“象标(iconicity)”的理论的认识。其存在判断图表(existentialgraphs)理论,在近年来基于计算机的图表推理表示法发展之后,被应用于人工智能领域,甚至IBM的一研究者JohnSoember)来对待,并把他与Husserl并提,用来对抗由Frege到Heidegger的“作为语言的逻辑(logicaslanguage)”的传统(其核心观点是,现实世界是语言的唯一解释,不存在多数可能的世界,从而否定模态逻辑的合法性,否认真理的可判定性或主张“真”的无法言说(ineffable))。主要参考文献Peirce,Charle

7、sSandersCollectedPapersOfCharlesSandersPeirceeditedbyCharlesHartshorneandPaularkBaidillanpany,1925.Peirce,CharlesSandersPhilosophicalWritingsofPeirceselectedandeditedbyJustusBuchler,DoverPublications,Inc.,1955.Hintikka,JakkoLingua

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。