关于指导学生阅读教材的探讨

关于指导学生阅读教材的探讨

ID:22325409

大小:24.50 KB

页数:5页

时间:2018-10-28

关于指导学生阅读教材的探讨_第1页
关于指导学生阅读教材的探讨_第2页
关于指导学生阅读教材的探讨_第3页
关于指导学生阅读教材的探讨_第4页
关于指导学生阅读教材的探讨_第5页
资源描述:

《关于指导学生阅读教材的探讨》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、关于指导学生阅读教材的探讨  关于学习目前流行这样的说法:“明天的文盲不是目不识丁的人,而是不会学习的人。”新课改中对学生提出的首要任务是阅读教材。这种阅读不是简单地从教材中画出概念、定义、定理、小结、范例等,更不是从头到尾的走过场。应该是从教材中提炼出该节课的重点、难点,会说出自己的见解或提出疑问,能准确理解和运用,并最终能通过对比、类比、联想、逆向思维等加工,产生或者推证出新的结论。  现在国内外的主要教学方法有:布鲁纳的发现学习法、赞科夫的实验教学体系、布卢姆的掌握学习法以及程序教学法、问题教学法、暗示教学法、纲要学习法等等。这些方法在我们教学过

2、程中可根据教材内容和学生的自主能力等需要有选择地使用。但不管是哪种方法,都应以提高学生的自主能力为主。苏联教育家马赫穆托夫就提过,“有目的、有系统地发展学生的智力和创造性思维,形成科学的世界观和积极的生活立场”是最主要的教学任务。于是培养学生的阅读能力就成为目前教学工作中的重中之重。它的重要性主要体现在以下三个方面。  一、学生获取知识的主要途径  学生获取知识,首先来自视觉和听觉,再在头脑加工和理解的基础上记忆,并且模仿性地运用知识,最后在变化了条件的情况下也能独立地解决所面临的新问题。由此可见阅读虽然是学习进入深度的初级阶段,但它是学生获取知识的必

3、经之路,更何况现在教材在安排上就有意地让学生在进行阅读理解的同时培养他们的理解和创造能力。  二、课堂教学的需要  在教师与学生共同参与的教学活动中,学生是主体,应视为发展的对象,最大限度地调动和发挥学生的积极性、主动性和独立自主性才是一堂成功的关键课。但单凭他们自己的能力又明显不足。所以,让学生在课前预习――阅读教材,尽可能地先解决一部分问题,再带着未解决的问题在课堂上通过教师的指导、点拨来解决问题。这样就发挥了学生的主观能动性,避免教师在课堂上“瞎”指导,提高了课堂的效率。应该说这样的过程使教师的教和学生的学相得益彰,达到高度的和谐与一致。  三、

4、终身教育的需要  自主活动是一个人离开学校后的必由之路,阅读作为自主活动的开始也使每个人接受终身教育成为可能。当然高中毕业后,部分学生还会接受高等教育或职业教育,但这时单靠教科书或教师的每周几节课要完成学业根本不可能,于是他们必须经常到图书馆或上网查阅资料,即便走进社会要完成公司和单位的课题或自己搞创作设计时也需要阅读资料。怎样在眼花缭乱的资料中删繁就简快速提取所需要的信息,这时他们的阅读能力的强弱就起到了关键作用。  那么,作为中学教师在提高学生阅读能力时应注意些什么?  首先,指导学生阅读应循序渐进。刚开始时可给学生列出大纲,让学生目的性明确,但要

5、向学生解释你是如何从教材中发掘出这些问题的,同时鼓励学生要敢于提问,这时学生也许会“胡思乱想”,这并不是一件坏事。教师在巡视过程中,对于正确思路,应借题发挥并加以鼓励;对于错误的理解及时纠正,并帮他找出根源;对于怪想、歪想不能一棒子打死,劝导他们先围绕本课中心讨论,课后另找时间与之交流,也许他们正是数学的怪才、歪才,应注意培养。根据学生阅读能力的情况,过一段时间可让学生阅读后以小组为单位互提问题进行交流,而教师只就他们争论的主题在课堂上重点剖析。比如,在使用人教版必修(一)教授函数概念时,可先列出阅读大纲:1.三个实例中,从变量的依赖关系考虑,有何共同

6、点?2.能否总结出函数的构成要素?并分别指出每个实例中的构成要素。这样的大纲对学生的阅读有导向作用:三个实例表达方式各异、背景材料不同,我们关心的是什么呢?  其次,指导学生阅读应掌控大局。这不仅因为学生的理解力有限,需要教师的引导。同时一节课时间紧迫,让学生阅读的时间应就学生对新的未知东西尚存疑点和难点而定,要保留教师帮他们解决问题、学生练习、课堂小结的时间。事实上,学生的想法往往既有片面性又有代表性,有的让人忍俊不禁,有的质量又高得出乎我们的意料。在授课时,可将它们当作正反面教材结合课本内容加以评说,但一定要把握分寸,适可而止。比如在讲解函数奇偶性

7、时,不管是判断还是运用,进行代数和几何之间的转变都是本部分的重难点。为此,让学生阅读后先判断函数的奇偶性,并结合图形说出偶函数的图形特征。然后,问函数的奇偶性。以上的问题,帮学生解读函数奇偶性定义中对定义域的要求是关于原点对称,反映到图像上是图像的对称性。为了加深理解,可提出:已知f(x)=ax2+2,若f(5)=3求f(-5)的值。为了满足部分理解力较高同学的需求,可提出:以上函?抵校?若能否比较的大小关系?  这些问题有一定的层次感,能满足不同能力学生的需要,也可以认为是在教学过程中引导学生探求的手段达到步步为营的目的。  再次,指导学生阅读要授之

8、于法,方法是效率的保证。不同的内容有不同的阅读方法。而不同时期指导他们阅读的方法也应不同。下面

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。