欢迎来到天天文库
浏览记录
ID:22049737
大小:26.00 KB
页数:5页
时间:2018-10-26
《小升初数学圆的知识点总结》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、小升初数学圆的知识点总结 下面是小编为大家整理了小升初数学圆知识点的相关内容,希望助考生一臂之力。 1.圆中心的一点叫圆心,用o表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。 两端都在圆上,并过圆心的线段叫直径,用d表示。 2.圆有无数条半径,有无数条直径。 3.圆心决定圆的位置,半径决定圆的大小。 4.把圆对折,再对折就能找到圆心。 5.圆是轴对称图形,直径所在的直线是圆的对称轴。圆有无数条对称轴。 6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2. 圆的周长 8.圆的周
2、长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取 =d或c=r.半圆的周长 10.1=2=3=4=5=6= 7=8=9=小升初数学圆的知识点总结 下面是小编为大家整理了小升初数学圆知识点的相关内容,希望助考生一臂之力。 1.圆中心的一点叫圆心,用o表示。一端在圆心,另一端在圆上的线段叫半径,用r表示。 两端都在圆上,并过圆心的线段叫直径,用d表示。 2.圆有无数条半径,有无数条直径。 3.圆心决定圆的位置,半径决定圆的大小。 4.把圆对折,再对折就能找到圆心。 5.圆是轴对称图形,直径所
3、在的直线是圆的对称轴。圆有无数条对称轴。 6.在同一个圆里,直径的长度是半径的2倍,可以表示为d=2r或r=d/2. 圆的周长 8.圆的周长除以直径的商是一个固定的数,叫做圆周率,用字母表示,计算时通常取 =d或c=r.半圆的周长 10.1=2=3=4=5=6= 7=8=9=10= 圆的面积 11.用s表示圆的面积,r表示圆的半径,那么s=rs环=(r-r) 12.11=12112=14413=16914=19615=22516=256 17=28918=32419=36120=
4、400 13.周长相等时,圆的面积最大。面积相等时,圆的周长最小。 面积相同时,长方形的周长最长,正方形居中,圆周长最短。 周长相同时,圆面积最大,正方形居中,长方形面积最小。 周长相同时,圆面积最大,利用这一特点,篮子、盘子做成圆形。 第四单元:比的认识 15.两个数相除,又叫做这两个数的比。比的后项不能为0. 16.比的前项和后项同时乘上或除以一个相同的数(0除外)。比值不变,这叫做比的基本性质。由于在平面直角坐标系中,先画x轴,而x轴上的坐标表示列。先用小括号将两个数括起来,再用逗号将两个数隔开。括号里面
5、的数由左至右为列数和行数。 列数与行数必须是具体的数,而不能用字母如(x,5)表示,它表述一条横线,(5,y)它表示一条竖线,都不能确定一个点。 二、分数乘法 分数乘法意义:1、分数乘整数是求几个相同加数的和的简便运算,与整数乘法的意义相同。 2、分数乘分数是求一个数的几分之几是多少。 分数的化简:分子、分母同时除以它们的最大公因数。 关于分数乘法的计算:可在乘的过程中约分,提倡在计算过程中约分,这样简便。 分数的基本性质:分子分母同时乘或者除以一个相同的数时(0除外),分数值不变。 倒数的意义:乘积为1的两
6、个数互为倒数。 特别强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。 求倒数的方法:1、求分数的倒数是交换分子分母的位置。 2、求整数的倒数是把整数看做分母是1的分数,再交换分子分母的位置。 1的倒数是它本身。因为1*1=1 0没有倒数。0乘任何数都得0=0*1,1/0(分母不能为0) 三、分数除法 分数除法是分数乘法的逆运算,就是已知两个数的积与其中一个因数,求另一个因数的运算。 除以一个数是乘这个数的倒数,除以几就是乘这个数的几分之一。 分数除法的基本性质:强调0除外 比:两个数
7、相除也叫两个数的比。比表示两个数的关系,可以写成比的形式,也可以用分数表示,但仍读几比几。比值是一个数,可以是整数,分数,也可以是小数。比可以表示两个相同量的关系,即倍数关系。也可以表示两个不同量的比,得到一个新量。例:路程/速度=时间。 化简比: 1、用比的前项和后项同时除以它们的最大公约数。 2、两个分数的比,用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。 3、两个小数的比,向右移动小数点的位置。也是先化成整数比。 比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。 常用
8、来做判断的: 一个数除以小于1的数,商大于被除数。 一个数除以1,商等于被除数。 一个数除以大于1的数,商小于被除数。 五、百分数 百分数的约分:百分数化成分数,写成分数形式,再约分。 分数表是一个数,也可以表示两个数的关系,百分数只表示两个数的关系,没有单位。 百分数的意义
此文档下载收益归作者所有