三角形复习讲义补课用

三角形复习讲义补课用

ID:21937179

大小:1020.75 KB

页数:28页

时间:2018-10-25

三角形复习讲义补课用_第1页
三角形复习讲义补课用_第2页
三角形复习讲义补课用_第3页
三角形复习讲义补课用_第4页
三角形复习讲义补课用_第5页
资源描述:

《三角形复习讲义补课用》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、三角形复习讲义(补课用)一、三角形相关概念1.三角形的概念:由不在同一直线上的三条线段首尾顺次连结所组成的图形叫做三角形。要点:①三条线段;②不在同一直线上;③首尾顺次相接.2.三角形的表示:通常用三个大写字母表示三角形的顶点,如用A、B、C表示三角形的三个顶点时,此三角形可记作△ABC,其中线段AB、BC、AC是三角形的三条边,∠A、∠B、∠C分别表示三角形的三个内角。3.三角形中的三种重要线段:三角形的角平分线、中线、高线是三角形中的三种重要线段.(1)三角形的角平分线:三角形一个角的平分线与这个角的对边相交,这个角的顶点和交点之间的线段叫做三角形的角平分线.注

2、意:①三角形的角平分线是一条线段,可以度量。而角的平分线是经过角的顶点且平分此角的一条射线.②三角形有三条角平分线且相交于一点。这一点一定在三角形的内部.③三角形的角平分线画法与角平分线的画法相同,可以用量角器画,也可通过尺规作图来画。(2)三角形的中线:在一个三角形中,连结一个顶点和它的对边中点的线段叫做三角形的中线.注意:①三角形有三条中线,且它们相交三角形内部一点.②画三角形中线时只需连结顶点及对边的中点即可.(3)三角形的高线:从三角形一个顶点向它的对边作垂线,顶点和垂足间的线段叫做三角形的高线,简称三角形的高.注意:①三角形的三条高是线段②锐角三角形三条高

3、线的交点在三角形内部,直角三角形的三条高线的交点在直角顶点上,钝角三角形三条高线的交点在三角形外部。③画三角形的高时,只需要向对边或对边的延长线作垂线,连结顶点与垂足的线段就是该边上的高.(二)三角形三边关系定理:①三角形两边之和大于第三边。故同时满足△ABC三边长a、b、c的不等式有:a+b>c,b+c>a,c+a>b.②三角形两边之差小于第三边。故同时满足△ABC三边长a、b、c的不等式有:a>b-c,b>a-c,c>b-a.注意:判定这三条线段能否构成一个三角形,只需看两条较短的线段的长度之和是否大于第三条线段即可(三)三角形的稳定性:三角形的三边确定了,那么

4、它的形状、大小都确定了,三角形的这个性质就叫做三角形的稳定性.例如起重机的支架采用三角形结构就是这个道理.三角形内角和性质的推理方法有多种,常见的有以下几种:(四)三角形的内角:结论1:三角形的内角和为180°.表示:在△ABC中,∠A+∠B+∠C=180°(1)构造平角①可过A点作MN∥BC(如图)②可过一边上任一点,作另两边的平行线(如图)(2)构造邻补角,可延长任一边得邻补角(如图)构造同旁内角,过任一顶点作射线平行于对边(如图)结论2:在直角三角形中,两个锐角互余.表示:如图,在直角三角形ABC中,∠C=90°,那么∠A+∠B=90°(因为∠A+∠B+∠C=

5、180°)注意:①在三角形中,已知两个内角可以求出第三个内角如:在△ABC中,∠C=180°-(∠A+∠B)②在三角形中,已知三个内角和的比或它们之间的关系,求各内角.如:△ABC中,已知∠A:∠B:∠C=2:3:4,求∠A、∠B、∠C的度数.(五)三角形的外角:1.定义:三角形一边与另一边的延长线组成的角叫做三角形的外角.如图,∠ACD为△ABC的一个外角,∠BCE也是△ABC的一个外角,这两个角为对顶角,大小相等.2.性质:①三角形的一个外角等于与它不相邻的两个内角的和.②三角形的一个外角大于与它不相邻的任何一个内角.如图中,∠ACD=∠A+∠B,∠ACD>∠A

6、,∠ACD>∠B.③三角形的一个外角与之相邻的内角互补3.外角个数:过三角形的一个顶点有两个外角,这两个角为对顶角(相等),可见一个三角形共有六个外角.(六)多边形1.多边形的定义:在平面内,由若干条不在同一条直线上的线段首尾顺次相连组成的封闭图形叫做多边形。2.凸多边形的定义:画出多边形的任何一条边所在的直线,整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形。如图:3.在平面内,各个角都相等,各条边也都相等的多边形叫做正多边形4.填表:(注下表所列的多边形均为正多边形)345678910内角和180º360º540º720º900º1080º1260º1

7、440º每一个内角的度数60º90º108º120º900º/7135º140º144º外角和360º每一个外角的度数120º90º72º60º360º/745º40º36º①n边形的内角和为(n-2)×180°②多边形的外角和为360°③多边形的对角线条对角线(七)多边形的镶嵌1.镶嵌:用一些形状、大小完全相同的一种或几种平面图形进行拼接,彼此之间不留空隙,不重叠地把平面的一部分完全覆盖,这就是平面图形的镶嵌.注意:各种图形拼接后要既无缝隙,又不重叠2.用一种正多边形镶嵌:①.用边长相同的正三角形可以镶嵌②.用边长相同的正方形可以镶嵌①用边长相同的正六边形可以

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。