椭圆及其标准方程(第1课时)教学设计

椭圆及其标准方程(第1课时)教学设计

ID:2190469

大小:27.00 KB

页数:7页

时间:2017-11-15

椭圆及其标准方程(第1课时)教学设计_第1页
椭圆及其标准方程(第1课时)教学设计_第2页
椭圆及其标准方程(第1课时)教学设计_第3页
椭圆及其标准方程(第1课时)教学设计_第4页
椭圆及其标准方程(第1课时)教学设计_第5页
资源描述:

《椭圆及其标准方程(第1课时)教学设计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、椭圆及其标准方程(第1课时)教学设计椭圆及其标准方程(第1时)教学设计一、教材内容分析本节是整个解析几何部分的重要基础知识。这一节是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。它的学习方法对整个这一具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整中具有承前起后的作用。二、学情分析高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。基于上述分析,我采取的是“

2、创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。使学生真正成为堂的主体。三、设计思想椭圆及其标准方程(第1课时)教学设计椭圆及其标准方程(第1时)教学设计一、教材内容分析本节是整个解析几何部分的重要基础知识。这一节是在《直线和圆的方程》的基础上,将研究曲线的方法拓展到椭圆,又是继续学习椭圆几何性质的基础,同时还为后面学习双曲线和抛物线作好准备。它的学习方法对整个这一具有导向和引领作用,所以椭圆是学生学习解析几何由浅入深的一个台阶,它在整中具有承前起后的作用。二

3、、学情分析高中二年级学生正值身心发展的鼎盛时期,思维活跃,又有了相应知识基础,所以他们乐于探索、敢于探究。但高中生的逻辑思维能力尚属经验型,运算能力不是很强,有待于训练。基于上述分析,我采取的是“创设问题情景-----自主探索研究-----结论应用巩固”的一种研究性教学方法,教学中采用激发兴趣、主动参与、积极体验、自主探究的学习,形成师生互动的教学氛围。使学生真正成为堂的主体。三、设计思想1、把头图和引言用微机以影像、录音和图片的形式给出,生动体现出数学的实用性;2、进行分组实验,让学生亲自动手,体验知识的发生过程,并培养团队协作精神;3、利用《几何画板》进行动态演示,

4、增加直观性;四、教学目标1、知识与技能目标:理解椭圆定义、掌握标准方程及其推导。2、过程与方法目标:注重数形结合,掌握解析法研究几何问题的一般方法,注重探索能力的培养。3、情感、态度和价值观目标:(1)探究方法激发学生的求知欲,培养浓厚的学习兴趣。(2)进行数学美育的渗透,用哲学的观点指导学习。五、教学的重点和难点教学重点:椭圆定义的理解及标准方程的推导。教学难点:标准方程的推导。四、说教学过程(一)、创设情景,导入新。(3分钟)1、利用微机放映“彗星运行”资料片,引入题——椭圆及其标准方程。2、提问:同学们在日常生活中都见过哪些带有椭圆形状的物体?对学生的回答进行筛选

5、,并利用微机放映几个例子的图片。设计意图:通过观看影音资料,一方面使学生简单了解椭圆的实际应用,另一方面产生问题意识,对研究椭圆产生心理期待。通过图片、实物,吸引学生的注意力,提高参与程度,为后续学习做好准备。从而激发学生的学习积极性和参与热情。(二)、动画演示,探索研究(1分钟)引导学生互相配合利用细绳和铅笔动手画椭圆,通过巡视找出作图比较规范的同学用细绳和粉笔演示。再根据多媒体规范演示椭圆的形成过程。根据作图过程,让学生思考:轨迹为椭圆需满足的条,引导学生总结椭圆定义。设计意图:注重概念形成过程,通过让合作交流,思考问题;让学生都积极地参与到学习中,体现学生主体意识

6、,开动大脑,训练思维。使知识从感性认识自然过渡到理性认识,增强了他们的集体凝聚,树立团队意识,培养学生的观察、归纳、概括能力。定义:设问:(1)、为什么强调“平面内”?(2)、对常数有什么限制?(3)、常数的取值不同时,轨迹如何变化?设计意图:培养学生动手实践能力,通过分组讨论提高发现问题的能力和提炼总结能力。在给出定义后,通过设问让学生加深对椭圆定义中的关键词汇的理解,进一步强化椭圆定义,真正使学生理解定义的内涵和外延。(三)、构建方程,探索新知(10分钟)探索方程这一部分,采用自主、合作方式,引导学生从方程思想、建系思想、等价换元等不同的角度分析归纳,并将小组讨论出

7、的较为优秀成果展示出,培养学生学习过程中的团队意识,也体验了数学思维的条理性和系统性。1、根据求曲线方程的一般步骤建立椭圆方程:(1)、建系设点;(2)、列方程(3)、化简方程;(4)、等价转化;设问:怎样选取坐标系?怎样化简含有两个根式的方程?③为什么要引入b?2、推导得出椭圆的标准方程为:(a>b>0)或(a>b>0)设问:①两种方程有何异同?②怎样根据条确定焦点的位置?设计意图:1、通过方程的推导,学会建立适当的坐标系,构造数与形的桥梁,学会用解析的方法解决问题,渗透数形结合的数学思想。培养学生的发现、探究、

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。