资源描述:
《随机过程的自相关函数与功率谱》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2.2随机过程的自相关函数与功率谱Theself-correlationfunctions&powerspectraofRPs信号的频谱和傅立叶变换Thespectra&Fouriertransformsofsignals1、基本概念Basicconcepts(1)实信号:可用时间的实函数表示的信号Realsignal:Thesignalsexpressedwithrealfunctionoftimeare….特点:具有有限的能量或有限的功率Features:Theenergyorpowerofarealsignalis`finite.(2)能量信号:能量有限的信号Energysig
2、nal:Thesignalswithfiniteenergies下一页(3)时间函数信号的分解Thedecompositionoftimefunctionsignals<1>一个时间函数信号可表示成若干个基本信号的总和或积分Atimefunctionsignalcanbeexpressedwiththesumorintegralofacertainnumberofbasicsignals<2>常用基本信号:复正弦信号、函数、sinc函数等Thebasicsignalsfrequentlyused:complexsinesignal,function,sincfunction(samp
3、lefunction)etc.(4)时间函数信号的频谱密度---傅立叶变换Thespectrumdensityoftimefunctionsignals---FourierTransform当用复正弦信号作为基本信号时,以时间函数表示的信号可写成(反傅立叶变换的形式)(1.2.21)其中(1.2.22)称为的频谱密度或的傅立叶变换;称为的傅立叶反变换,并将这种关系记为(1.2.23)Whencomplexsinesignalsareusedasbasicsignals,atimefunctionsignalcanbewrittenwiththeformofInverseFourier
4、TransformasWhereiscalledthespectrumdensity,ortheFourierTransformofthe,andtheistheInverseFourierTransformofthe.Thisrelationisdenotedas.ThetwofunctionsarecalledaFTpair.2、傅立叶变换的重要特性TheimportantpropertiesofFT(1)线性性质Linearity若函数、…所对应的傅立叶变换分别是、…,,则下列变换对成立:(1.2.24)式中为有限正整数,为常系数。Thefollowingequalitywil
5、lholdif,,…arethecorrespondingFouriertransformsof,,…,respectively:Whereisanintegerandsareconstantcoefficients.(2)尺度性质Scaletransformation若,则对实常数有(1.2.25)If,thenforarealconstant,thefollowingequalityholds:(3)时延性质TimeDelay若,则有(1.2.26)If,thenthefollowingequalityholds:(4)频移性质FrequencyShift若,则有(1.2.27)
6、If,thenthefollowingequalityholds:(5)时域微分与积分Differentialandintegralintimedomain若,则下列各式成立If,thenfollowingequalitieshold:<1>(1.2.28)<2>(1.2.29)<3>(1.2.30)<4>若在区间上积分为零,即信号无直流分量,则上式化简为(1.2.31)(6)时间倒置TimeReverse若,则有(1.2.32)(7)对偶性Duality若,则有(1.2.33)(8)时域卷积Timedomainconvolution若,则有(1.2.34)(9)频域卷积Freque
7、ncydomainconvolution若,,则有(1.2.35-1)或记为(1.2.35-2)(10)复共轭特性Complexconjugation若,则有(1.2.36)(1.2.37)3、典型函数的傅立叶变换TheFToftypicalfunctions(1)单位脉冲函数(函数)Unitpulsefunction(function)<1>Definition:(1.2.38)moreover<2>Feature:<3>FT:(1.2.39)orden