欢迎来到天天文库
浏览记录
ID:21692088
大小:1.12 MB
页数:39页
时间:2018-10-20
《二面角的平面角求法综合》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、二面角的求法(总结)二面角的平面角二面角的平面角以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.O复习:(1)定义法——直接在二面角的棱上取一点(特殊点)分别在两个半平面内作棱的垂线,得到平面角.二面角的求法二面角的求法(2)三垂线法——利用三垂线定理或逆定理作出平面角,通过解直角三角形求角的大小.(3)垂面法——通过做二面角的棱的垂面,两条交线所成的角即为平面角.ABDO(4)射影面积法——若多边形的面积是S,它在一个平面上的射影图形面积是S’,则
2、二面角的大小为COS=S’÷SCE2、两个平面的法向量的夹角与这两个平面所成的二面角的平面角有怎样的关系?探究准备:答:相等或互补αβm互补αβ相等m1、如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上任一点,则二面角P-BC-A的平面角为:A.∠ABPB.∠ACPC.都不是练习2、已知P为二面角内一点,且P到两个半平面的距离都等于P到棱的距离的一半,则这个二面角的度数是多少?pαβιABOABCP60º二面角例1.如图,已知P是二面角α-AB-β棱上一点,过P分别在α、β内引射线PM、PN,且∠
3、MPN=60º∠BPM=∠BPN=45º,求此二面角的度数。βαABPMNCDO解:在PB上取不同于P的一点O,在α内过O作OC⊥AB交PM于C,在β内作OD⊥AB交PN于D,连CD,可得∠COD是二面角α-AB-β的平面角设PO=a,∵∠BPM=∠BPN=45º∴CO=a,DO=a,PCa,PDa又∵∠MPN=60º∴CD=PCa∴∠COD=90º因此,二面角的度数为90ºaOPC二面角例2.如图P为二面角α–ι–β内一点,PA⊥α,PB⊥β,且PA=5,PB=8,AB=7,求这二面角的度数。过PA、P
4、B的平面PAB与棱ι交于O点∵PA⊥α∴PA⊥ι∵PB⊥β∴PB⊥ι∴ι⊥平面PAB∴∠AOB为二面角α–ι–β的平面角又∵PA=5,PB=8,AB=7由余弦定理得∴∠P=60º∴∠AOB=120º∴这二面角的度数为120º解:βαABPιO二面角OABPC取AB的中点为E,连PE,OE∵O为AC中点,∠ABC=90º∴OE∥BC且OEBC在Rt△POE中,OE,PO∴∴所求的二面角P-AB-C的正切值为例3.如图,三棱锥P-ABC的顶点P在底面ABC上的射影是底面Rt△ABC斜边AC的中点O,若PB=A
5、B=1,BC=,求二面角P-AB-C的正切值。∴∠PEO为二面角P-AB-C的平面角在Rt△PBE中,BE,PB=1,PEOE⊥AB,因此PE⊥ABE解:EOP二面角练习1:已知Rt△ABC在平面α内,斜边AB在30º的二面角α-AB-β的棱上,若AC=5,BC=12,求点C到平面β的距离CO。βαACBOD练习2:在平面四边形ABCD中,AB=BC=2,AD=CD=,∠B=120º;将三角形ABC沿四边形ABCD的对角线AC折起来,使DB′=,求△AB′C所在平面与△ADC所在平面所成二面角的平面角的度
6、数。ABCB’DO二面角探究一:试一试:例1、如图:在三棱锥S-ABC中,SA⊥平面ABC,AB⊥BC,DE垂直平分SC,分别交AC、SC于D、E,且SA=AB=a,BC=a.求:平面BDE和平面BDC所成的二面角的大小。SAECBD分析:1、根据已知条件提供的数量关系通过计算证明有关线线垂直;2、利用已得的垂直关系找出二面角的平面角。解:如图:∵SA⊥平面ABC,∴SA⊥AB,SA⊥AC,SA⊥BD;于是SB==a又BC=a,∴SB=BC;∵E为SC的中点,∴BE⊥SC又DE⊥SC故SC⊥平面BDE可得
7、BD⊥SC又BD⊥SA∴BD⊥平面SAC∴∠CDE为平面BDE和平面BDC所成二面角的平面角。∵AB⊥BC,∴AC===a在直角三角形SAC中,tan∠SCA==∴∠SCA=300,∴∠CDE=900--∠SCA=600解毕。议一议:刚才的证明过程中,是用什么方法找到二面角的平面角的?请各小组讨论交流一下。SECABD探究二:试一试例二:如图:直四棱柱ABCD-A1B1C1D1,底面ABCD是菱形,AD=AA1,∠DAB=600,F为棱AA1的中点。求:平面BFD1与平面ABCD所成的二面角的大小。A1D
8、1C1B1ADCBF要求:1、各人思考;2、小组讨论;3、小组交流展示;4、总结。A1D1C1CB1BDAPF如图:延长D1F交DA的延长线于点P,连接PB,则直线PB就是平面BFD1与平面ABCD的交线。∵F是AA1的中点,∴可得A也是PD的中点,∴AP=AB,又∵∠DAB=600,且底面ABCD是菱形,∴可得正三角形ABD,故∠DBA=600,∵∠P=∠ABP=300,∴∠DBP=900,即PB⊥DB;又因为是直棱柱,∴D
此文档下载收益归作者所有