欢迎来到天天文库
浏览记录
ID:21243993
大小:960.50 KB
页数:12页
时间:2018-10-20
《2017最新高中文科数学直线和圆方程复习》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第六讲、直线和圆的方程四、平面解析几何初步 (一)直线与方程 1.在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。 2.理解直线的倾斜角和斜率的概念及相互间的关系,掌握过两点的直线斜率的计算公式。 3.能根据两条直线的斜率判定这两条直线平行或垂直。 4.掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。 5.会求两直线的交点坐标。 6.掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。 (二)圆与方程 1.掌握圆的标准方程与一般方程。 2.能判断直线与圆、圆与
2、圆的位置关系。 3.能用直线和圆的方程解决一些简单的问题。 4.初步了解用代数方法处理几何问题。 (三)空间直角坐标系 1.了解空间直角坐标系,会用空间直角坐标表示点的位置。 2.了解空间两点间的距离公式。直线方程1数轴上两点间距离公式:2直角坐标平面内的两点间距离公式:3直线的倾斜角:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角当直线和x轴平行或重合时,我们规定直线的倾斜角为0°可见,直线倾斜角的取值范围是0°≤α<180°4直线的斜
3、率:倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k=tanα(α≠90°)倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞)5直线的方向向量:设F1(x1,y1)、F2(x2,y2)是直线上不同的两点,则向量=(x2-x1,y2-y1)称为直线的方向向量向量=(1,)=(1,k)也是该直线的方向向量,k是直线的斜率特别地,垂直于轴的直线的一个方向向量为=(0,1)6求直线斜率的方法①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα②公式法:已知直线过两点P1(x1,
4、y1)、P2(x2,y2),且x1≠x2,则斜率k=③方向向量法:若=(m,n)为直线的方向向量,则直线的斜率k=平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率对于直线上任意两点P1(x1,y1)、P2(x2,y2),当x1=x2时,直线斜率k不存在,倾斜角α=90°;当x1≠x2时,直线斜率存在,是一实数,并且k≥0时,α=arctank;k<0时,α=π+arctank7直线方程的五种形式点斜式:,斜截式:,两点式:,截距式:,一般式:两直线的位置关系1.特殊情况下的两直线平行与垂直.当两条直线中有一条直线没有斜率时:(1)当
5、另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直2.斜率存在时两直线的平行与垂直:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即=且已知直线、的方程为:,:∥的充要条件是⑵两条直线垂直的情形:如果两条直线的斜率分别是和,则这两条直线垂直的充要条件是.已知直线和的一般式方程为:,:,则.3直线到的角的定义及公式:直线按逆时针方向旋转到与重合时所转的角,叫做到的角到的角:0°<<180°,
6、如果如果,4.直线与的夹角定义及公式:到的角是,到的角是π-,当与相交但不垂直时,和π-仅有一个角是锐角,我们把其中的锐角叫两条直线的夹角当直线⊥时,直线与的夹角是夹角:0°<≤90°如果如果,5.两条直线是否相交的判断两条直线是否有交点,就要看这两条直线方程所组成的方程组:是否有惟一解6.点到直线距离公式:点到直线的距离为:7.两平行线间的距离公式已知两条平行线直线和的一般式方程为:,:,则与的距离为8直线系方程:若两条直线:,:有交点,则过与交点的直线系方程为+或+(λ为常数)简单的线性规划及实际应用1二元一次不等式表示平面区域:在平面直角坐标
7、系中,已知直线Ax+By+C=0,坐标平面内的点P(x0,y0)B>0时,①Ax0+By0+C>0,则点P(x0,y0)在直线的上方;②Ax0+By0+C<0,则点P(x0,y0)在直线的下方对于任意的二元一次不等式Ax+By+C>0(或<0),无论B为正值还是负值,我们都可以把y项的系数变形为正数当B>0时,①Ax+By+C>0表示直线Ax+By+C=0上方的区域;②Ax+By+C<0表示直线Ax+By+C=0下方的区域2线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题满足线性约束条件的解(x,y)叫做可行解,由
8、所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解生产实际中有许多问题都可
此文档下载收益归作者所有