椭圆及其标准方程说课课件

椭圆及其标准方程说课课件

ID:20838865

大小:1.33 MB

页数:34页

时间:2018-10-16

椭圆及其标准方程说课课件_第1页
椭圆及其标准方程说课课件_第2页
椭圆及其标准方程说课课件_第3页
椭圆及其标准方程说课课件_第4页
椭圆及其标准方程说课课件_第5页
资源描述:

《椭圆及其标准方程说课课件》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、大连育明高中常爱华椭圆及其标准方程教材分析教学策略教学过程教材分析教学策略教学过程一.教材分析1.1教材的地位与作用“椭圆及其标准方程”是高中《数学》第二册第八章第一节的内容.解析几何是数学一个重要的分支,它沟通了数学内数与形、代数与几何等最基本对象之间的联系.通过第七章学生初步掌握了解析几何研究问题的主要方法,并在平面直角坐标系中研究了直线和圆这两个基本的几何图形.在第八章中教材利用三种圆锥曲线进一步深化如何利用代数方法研究几何问题.由于教材以椭圆为重点交代求方程、利用方程讨论几何性质的一般方法,在双曲线、抛物线的教学中应用和巩固.因此“椭圆及其标准方程”作为第八章中开门见山的第一节起到了

2、承上启下的重要作用.1.2教学目标知识与技能:准确理解椭圆的定义,掌握椭圆的标准方程及其推导.过程与方法:通过引导学生亲自动手尝试画图、发现椭圆的形成过程进而归纳出椭圆的定义,培养学生观察、辨析、归纳问题的能力.情感、态度与价值观:通过经历椭圆方程的化简,增强学生战胜困难的意志品质并体会数学的简洁美、对称美.通过讨论椭圆方程推导的等价性养成学生扎实严谨的科学作风.1.3教学重点和难点重点:椭圆的定义及椭圆的标准方程难点:推导椭圆的标准方程关键:含有两个根式的等式化简二.教学策略2.1教学方法与学法设计:“引导探究式教学”2.2教学手段设计:多媒体三.教学过程3.1复习引入阶段(1)圆的定义是

3、什么?圆的标准方程的形式怎样?(2)如何推导圆的标准方程呢?活动形式:师问生答(教师作必要的补充、纠正)设计意图:激活学生已有的认知结构;为本课推导椭圆的标准方程提供了方法与策略.3.2讲授新课阶段1.椭圆的定义平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.注:若,则P点的轨迹为椭圆.若,则P点的轨迹为线段.若,则P点的轨迹不存在.3.2讲授新课阶段1.椭圆的定义平面内与两个定点、的距离的和等于常数(大于)的点的轨迹叫做椭圆.这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距.注:若,则P点的轨迹为椭圆.若,则P点的轨

4、迹为线段.若,则P点的轨迹不存在.<1>将一条细绳的两端分别固定在平面内的两个定点、上,用笔尖将细绳拉紧并运动,在纸上你得到了怎样的图形?<2>如果调整细绳两端点、的相对位置,细绳的长度不变,猜想你的椭圆会发生怎样的变化?<3>同样方式的操作为什么得到不同的结果?活动形式:操作--交流--归纳--演示--联系生活设计意图:准确理解椭圆的定义;培养学生观察、辨析、概括问题的能力并用联系与发展的观点看问题联系生活:情境1.生活中,你见过哪些类似椭圆的图形或物体?情境2.让学生观察倾斜的圆柱形水杯的水面边界线,并从中抽象出数学模型.情境3.观看天体运行的轨道图片.设计意图:渗透科学源于生活,圆锥曲

5、线在生产和技术中有着广泛的应用.2.椭圆的标准方程例:已知点、为椭圆两个焦点,P为椭圆上任意一点,且,,其中,求椭圆方程一般步骤:(1)建系设点(2)写出点的集合(3)写出代数方程(4)化简方程点拨:怎样建系可以使方程尽可能简单?点拨:化简的目的是什么?有怎样的方法?移项平方直接平方yxOacb2.椭圆的标准方程例:已知点、为椭圆两个焦点,P为椭圆上任意一点,且,,其中,求椭圆方程一般步骤:(1)建系设点(2)写出点的集合(3)写出代数方程(4)化简方程(5)证明活动形式:点拨----板演---点评设计意图:掌握椭圆标准方程及推导方法;培养学生战胜困难的意志品质点拨:怎样建系可以使方程尽可能

6、简单?点拨:为化简方程,你将如何处理?讨论平方的等价性<1>对于给定条件,是否只有一种建系方法?<2>不推导,你能写出另一种椭圆的标准方程吗?<3>如何由方程,辨别两种不同的建系方法呢?yoxPF2F1yoxPF1F23.3知识应用阶段例1(1)椭圆的焦点坐标为:(2)椭圆的焦距为4,则m的值为:活动形式:思考—解答—点评设计意图:熟悉椭圆两种形式的标准方程例2已知:椭圆焦点的坐标分别是(-4,0)、(4,0),椭圆上一点P到两焦点的距离的和等于10,求椭圆的标准方程活动形式:思考—解答—点评设计意图:运用椭圆的定义,掌握椭圆的标准方程例2已知:椭圆焦点坐标分别是(-4,0)(4,0),椭圆

7、上一点P到两焦点的距离的和等于10,求椭圆的标准方程变式<1>已知:椭圆焦点的坐标分别是(-4,0)、(4,0),且椭圆经过点,求椭圆的标准方程.活动形式:思考—板演(对比)—点评设计意图:运用椭圆的定义或待定系数法求椭圆的标准方程例2已知:椭圆焦点坐标分别是(-4,0)(4,0),椭圆上一点P到两焦点的距离的和等于10,求椭圆的标准方程变式<1>已知:椭圆焦点的坐标分别是(-4,0)、(4,0),且椭圆经过

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。