量子力学试题及答案!

量子力学试题及答案!

ID:20751756

大小:117.50 KB

页数:5页

时间:2018-10-15

量子力学试题及答案!_第1页
量子力学试题及答案!_第2页
量子力学试题及答案!_第3页
量子力学试题及答案!_第4页
量子力学试题及答案!_第5页
资源描述:

《量子力学试题及答案!》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、2002级量子力学期末考试试题和答案B卷一、(共25分)1、厄密算符的本征值和本征矢有什么特点?(4分)2、什么样的状态是束缚态、简并态和偶宇称态?(6分)3、全同玻色子的波函数有什么特点?并写出两个玻色子组成的全同粒子体系的波函数。(4分)4、在一维情况下,求宇称算符和坐标的共同本征函数。(6分)5、简述测不准关系的主要内容,并写出时间和能量的测不准关系。(5分)二、(15分)已知厄密算符,满足,且,求1、在A表象中算符、的矩阵表示;2、在A表象中算符的本征值和本征函数;3、从A表象到B表象的幺正变换矩阵S。三、(15分)线性谐振

2、子在时处于状态,其中,求1、在时体系能量的取值几率和平均值。2、时体系波函数和体系能量的取值几率及平均值四、(15分)当为一小量时,利用微扰论求矩阵的本征值至的二次项,本征矢至的一次项。五、(10分)一体系由三个全同的玻色子组成,玻色子之间无相互作用.玻色子只有两个可能的单粒子态.问体系可能的状态有几个?它们的波函数怎样用单粒子波函数构成?一、1、厄密算符的本征值是实数,本征矢是正交、归一和完备的。2、在无穷远处为零的状态为束缚态;简并态是指一个本征值对应一个以上本征函数的情况;将波函数中坐标变量改变符号,若得到的新函数与原来的波函

3、数相同,则称该波函数具有偶宇称。3、全同玻色子的波函数是对称波函数。两个玻色子组成的全同粒子体系的波函数为:4、宇称算符和坐标的对易关系是:,将其代入测不准关系知,只有当时的状态才可能使和同时具有确定值,由知,波函数满足上述要求,所以是算符和的共同本征函数。5、设和的对易关系,是一个算符或普通的数。以、和依次表示、和在态中的平均值,令,,则有,这个关系式称为测不准关系。时间和能量之间的测不准关系为:二、1、由于,所以算符的本征值是,因为在A表象中,算符的矩阵是对角矩阵,所以,在A表象中算符的矩阵是:设在A表象中算符的矩阵是,利用得:

4、;由于,所以,;由于是厄密算符,,令,(为任意实常数)得在A表象中的矩阵表示式为:2、在A表象中算符的本征方程为:即和不同时为零的条件是上述方程的系数行列式为零,即对有:,对有:所以,在A表象中算符的本征值是,本征函数为和3、从A表象到B表象的幺正变换矩阵就是将算符在A表象中的本征函数按列排成的矩阵,即三、解:1、的情况:已知线谐振子的能量本征解为:,当时有:,于是时的波函数可写成:,容易验证它是归一化的波函数,于是时的能量取值几率为:,,能量取其他值的几率皆为零。能量的平均值为:2、时体系波函数显然,哈密顿量为守恒量,它的取值几率

5、和平均值不随时间改变,故时体系能量的取值几率和平均值与的结果完全相同。四、解:将矩阵改写成:能量的零级近似为:,,能量的一级修正为:,,能量的二级修正为:,,所以体系近似到二级的能量为:,,先求出属于本征值1、2和3的本征函数分别为:,,,利用波函数的一级修正公式,可求出波函数的一级修正为:,,近似到一级的波函数为:,,五、解:由玻色子组成的全同粒子体系,体系的波函数应是对称函数。以表示第个粒子的坐标,根据题设,体系可能的状态有以下四个:(1);(2)(3);(4)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。