欢迎来到天天文库
浏览记录
ID:20307445
大小:1.58 MB
页数:20页
时间:2018-10-12
《八年级数学上册_152乘法公式(第1课时)平方差公式课件_人教新课标版》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、整式乘法的平方差公式回顾&思考☞(m+a)(n+b)=如果m=n,且都用x表示,那么上式就成为:多项式乘法法则是:用一个多项式的每一项乘另一个多项式的每一项再把所得的积相加。mn+mb+an+ab=(x+a)(x+b)x2+(a+b)x+ab这是上一节学习的一种特殊多项式的乘法——两个相同字母的二项式的乘积.如果(x+a)(x+b)中的a、b再有某种特殊关系,又将得到什么特殊结果呢?这就是从本课起要学习的内容.平方差公式计算下列各题:做一做(1)(x+3)(x−3);(2)(1+2a)(1−2a);(3)(x+4y)(x−4y);(4)(y+5z)(y−5
2、z);=x2−9;=1−4a2;=x2−16y2;=y2−25z2;观察&发现观察以上算式及其运算结果,你发现了什么规律?=x2−32;=12−(2a)2;=x2−(4y)2=y2−(5z)2.(a+b)(a−b)=a2−b2.两数和与这两数差的积,等于这两数的平方的差.用式子表示,即:1、等式左边的两个多项式有什么特点?2、等式右边的多项式有什么规律?3、请用一句话归纳总结出等式的规律。两数的和乘以它们的差——平方差公式两个数的和与这两个数的差的积等于这两个数的平方差.公式的基本变形:(a-b)(a+b)=a2-b2特征(1)两个二项式相乘时,有一项相同,
3、另一项符号相反,积等于相同项的平方减去相反数项的平方。(2)公式中的a和b可以是具体数,也可以是单项式或多项式。(a+b)(a−b)=a2−b2初识平方差公式注:必须符合平方差公式特征的代数式才能用平方差公式!!抢答:试一试判断下列式子是否可用平方差公式。(1)(-a+b)(a+b)(2)(-2a+b)(-2a-b)(3)(-a+b)(a-b)(4)(a+b)(a-c)(是)(否)(否)(是)拓展练习(1)(a+b)(a−b);(2)(a−b)(b−a);(3)(a+2b)(2b+a);(4)(a−b)(a+b);(5)(2x+y)(y−2x).(不能)
4、本题是公式的变式训练,以加深对公式本质特征的理解.下列式子可用平方差公式计算吗?为什么?如果能够,怎样计算?(第一个数不完全一样)(不能)(不能)(能)−(a2−b2)=−a2+b2;(不能)例题例1利用平方差公式计算:(5+6x)(5−6x);(2)(x+2y)(x−2y);(3)(−m+n)(−m−n).解:(1)(5+6x)(5−6x)=55第一数a52平方−6x6x第二数b平方要用括号把这个数整个括起来,注意当“第一,二数”是一分数或是数与字母的乘积时,再平方;()26x=25−最后的结果又要去掉括号。36x2;(2)(x+2y)(x−2y)=xxx
5、2−()22y2y2y=x2−4y2;(3)(−m+n)(−m−n)=−m−m−m()2−nnn2=m2−n2.例2计算1998200219982002=(2000-2)(2000+2)=4000000-4=3999996解例3街心花园有一块边长为a米的正方形草坪,经统一规划后,南北向要加长2米,而东西向要缩短2米,问改造后的长方形草坪的面积是多少?解例题:1、(2a+3b)(2a-3b)=(2a)2-(3b)2=4a2-9b2(a+b)(a-b)=a2-b22、(-4a-1)(-4a+1)解:(-4a-l)(-4a+l)=(-4a+1)(-4a-1)=(-4
6、a)2-l=16a2-1.快言快语:1、参照平方差公式“(a+b)(a-b)=a2-b2”填空。(1)(t+s)(t-s)=____(2)(1+n)(1-n)=_____(3)(10+5)(10-5)=______t2-s212-n2102-522、双基诊断:(3m+2n)(3m-2n)=3m2-2n2()×3计算(3a2-7)(-3a2-7).步骤:1、判断;2、调整;3、分步解。(注意:要用好括号;幂的运算。)解:原式=(-7+3a2)(-7-3a2)=(-7)2-(3a2)2=49-9a4.课堂练习1.口答下列各题:(l)(-a+b)(a+b);(2)(
7、a-b)(b+a);(3)(-a-b)(-a+b);(4)(a-b)(-a-b).2、王敏捷同学去商店买了单价是9.8元/千克的糖果10.2千克,售货员刚拿起计算器,王敏捷就说出应付99.96元,解决实际问题1、计算:1996×2004解:1996×2004=(2000-4)(2000+4)=20002-42=4000000-16=3999984小结本节课你学到了什么?试用语言表述平方差公式(a+b)(a−b)=a2−b2。应用平方差公式时要注意一些什么?两数和与这两数差的积,等于它们的平方差。变成公式标准形式后,再用公式。或提取两“−”号中的“−”号,运用平
8、方差公式时,要紧扣公式的特征,找出相等
此文档下载收益归作者所有