简支梁绝对最大弯矩

简支梁绝对最大弯矩

ID:20200577

大小:105.00 KB

页数:4页

时间:2018-10-08

简支梁绝对最大弯矩_第1页
简支梁绝对最大弯矩_第2页
简支梁绝对最大弯矩_第3页
简支梁绝对最大弯矩_第4页
资源描述:

《简支梁绝对最大弯矩》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、§2.5简支梁的绝对最大弯矩(一)简支梁绝对最大弯矩简支梁所有截面的最大弯矩中的最大者称为简支梁的绝对最大弯矩。对于等截面梁来说,绝对最大弯矩发生的截面是最危险截面,是结构设计的依据。 (二)绝对最大弯矩的计算方法绝对最大弯矩是最大弯矩,因此当其发生时应有某个荷载作用在其发生的截面。为了求绝对最大弯矩,可将每个荷载均作为发生绝对最大弯矩的临界荷载,考查在荷载移动过程中该荷载作用点下截面的弯矩变化规律,求出最大值,然后从这些最大值中选出最大的即是绝对最大弯矩。可以推导出当把某个荷载作为临界荷载时,该荷载作用点下截面的最大弯矩为  (K=1,2,…,n)        (2-8)

2、式中:为发生最大弯矩时距左支座的距离;为梁上外力的合力,a为与的距离。从图2-29中可看到这时合力与对称分布于梁中点C两侧;为左侧的梁上的各荷载对作用点的力矩之和。图2-29从由式(2-8)算出的n个弯矩最大值中选出最大的即是绝对最大弯矩。计算经验表明,绝对最大弯矩通常发生在梁的中点附近截面,使中点截面发生最大弯矩的临界荷载一般情况下也是发生绝对最大弯矩的临界荷载。这样就不必计算n种情况,而只计算一种情况。实际计算时可按下述步骤进行:1、求出能使梁中点截面的弯矩发生最大值的临界荷载;2、计算梁上合力及其与的距离a;3、移动荷载,使与对称分布与中点两侧。若无荷载移出或移入梁,则

3、用式(2-8)计算出的弯矩即为绝对最大弯矩;若有荷载移出或移入,则从第2步重新计算。【例2-15】求图2-30a所示简支梁的绝对最大弯矩并与跨中最大弯矩比较。已知:。图2-30解:作出跨中C截面的弯矩影响线如图2-30b所示。确定出使C截面弯矩发生最大值的临界荷载为和(过程略)。将放在C点(图2-30c),计算梁上合力及到的距离a,有将与对称放在中点C两侧(图2-30d),无荷载移出或移入,由式(2-8),有将放在C点,重复前面过程,可得,绝对最大弯矩发生在C点两侧距C点均为0.363m处,值为752.5kN·m。处于C点时(图2-30c),可求得的最大弯矩为比较与,绝对最大

4、弯矩比跨中点最大弯矩大1.9%。在实际工程中用跨中最大弯矩近似代替绝对最大弯矩,误差不大。以上分析中只考虑了移动荷载,未计入固定荷载的影响,绝对最大弯矩应包含固定荷载的作用。

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。