随机过程在量子场论计算中的应用

随机过程在量子场论计算中的应用

ID:19877186

大小:180.00 KB

页数:5页

时间:2018-10-07

随机过程在量子场论计算中的应用_第1页
随机过程在量子场论计算中的应用_第2页
随机过程在量子场论计算中的应用_第3页
随机过程在量子场论计算中的应用_第4页
随机过程在量子场论计算中的应用_第5页
资源描述:

《随机过程在量子场论计算中的应用》由会员上传分享,免费在线阅读,更多相关内容在学术论文-天天文库

1、隨機過程在量子場論計算中的應用文/林立物理雙月刊(廿七卷三期)2005年6月504所謂隨機過程,是指在一定的條件下,可能發生也可能不發生的過程,具有不確定性,亦即:具有機率性。最常見的隨機過程之數學模型就是無規行走(randomwalk)。大家熟知的布朗運動現象即可利用無規行走來解釋。在無規行走中,最重要的一個物理量就是機率分布函數。它是表示一個在初始時刻位於原點的質點,經過N步無規行走之後,出現在的機率。由於在無規行走模型中,我們假設質點每一次行走之步伐大小相同,所花的時間也相同,所以在中的N即相當於是時間

2、變數。經由條件機率的考量及傅立葉變換的技巧,我們可以推導出的路徑積分表達式,其形式和量子力學中時間演化算符(又稱為傳播子)之Feynman路徑積分表達式在數學上相同,有一個一對一的對應[註1]。這種對應在物理上也有一定的意義,因為一個量子系統具有量子不確定性,因此帶有隨機性。量子力學的Feynman路徑積分表示法可以將這種隨機性明確的表示出來。我們可以將量子系統傳播子的路徑積分式中的每一條路徑視為一個隨機過程,其對傳播子之貢獻的權重即為,其中S為此量子系統所對應的古典力學系統之作用量,所以等於動能項減去位能項

3、。若是經過一個Wick旋轉: ,將時間轉換為虛時間t’之後(所以上式中的τ仍取實數值),就可以化為完全和無規行走之之路徑積分有一對一對應的形式了。在此形式中,因子變成為,其中SE是對應的古典力學系統之動能項加位能項,相當於是總能量了[註2]。如此一來,Wick旋轉之後傳播子路徑積分式中的即可視為相應的隨機過程發生的機率。這在物理意義上也可以和無規行走之的路徑積分式有了對應[註3]。路徑積分表示法作為一種解題方法,在具有機率性的物理問題中有很廣泛的應用。在各種應用中,路徑積分式中之各條路徑都可以看成是一個隨機過

4、程。本文主要是要介紹路徑積分在量子場論之非微擾計算中的應用。量子場論在數學上就是量子力學,其主要差別只在於量子場論將(廣義)空間座標變成為腳標,場的本身則成為“力學量”,亦即:成為新的廣義座標,從而有對應的“共軛動量”(姑且稱之為動量場),於是在量子場論中,被量子化的是場及其共軛動量。我們可以利用下面的表列看出量子場論與量子力學在數學形式上的對應:古典質點力學古典場論廣義座標廣義動量量子力學量子場論[註4]物理雙月刊(廿七卷三期)2005年6月504和量子力學的情況一樣,量子場論也有兩種量子化方法。第一種就是

5、“傳統”的量子化方法:正則量子化。它的基本假設即上述表列中所列的基本等時對易關係。這種量子化方法對應於古典力學的Hamilton方法。它最大的好處是可以經由傅立葉變換將場的粒子性格顯示出來,並且在原則上可得出系統Hamilton算符的本徵值譜[註5]。但缺點是實際上作計算(尤其是非微擾的數值計算)時不方便。第二種量子化方法就是泛函積分法。這是完全比照量子力學中的Feynman路徑積分法而得到的。我們可以由正則量子化中的真空到真空的躍遷機率振幅之表達式出發,把時間分割成很多個很短的時段,再夾入一組一組的完備集,

6、然後即可將場算符,化為場函數,,再將場動量部分的積分積掉(這部分的積分是高斯積分,所以可以作解析計算),就會得出形式上和量子力學的路徑積分相似的泛函積分[註6]。量子場論的泛函積分法在作計算時是十分方便的。首先我們可以採用引入外源的方法作為技巧來作微擾展開計算,在計算過程中很自然的就會得到Wick定理的結果[註7]。相對的,在正則量子化中,我們必須花費好一番功夫才能證明出Wick定理[註8]。其次,我們有一套系統化的方法可以用來直接計算泛函積分。這裡所謂的“直接”是指不作微擾展開,也不作其他的近似。這樣的計算

7、當然適用於強耦合的情況,故通常稱為非微擾計算。本文所要介紹的隨機過程在量子場論計算中的應用,指的正是這種情況。這裡所說的泛函積分其實就是路徑積分,是在“場空間”中的路徑積分,所以是抽象的路徑。而和量子力學的路徑積分相同,量子場論的泛函積分告訴我們,時間演化有來自每一條可能的路徑的貢獻,其貢獻的權重正比於,其中S即為此量子場論系統所對應的古典場論的作用量,其中L為此量子場論系統的拉氏量密度,所以也是動能減去位能。所以,在量子場論中,真空到真空的躍遷振幅在數學上也是一個相位角因子的積分:,只不過這裡的積分是一個泛

8、函積分。可以看出,古典極限(即古典場論)正是由靜止相位條件來決定的,從而可得出Euler-Lagrange方程,此即古典場的運動方程。然而,任何泛函積分牽涉到的自由度總數都必然是不可數的無窮多,所以非微擾計算還是必須作一些近似,否則實際上無法執行。在實際計算中,首先我們先將時間軸轉到虛時間軸,這相當於作一個Wick變換: ,其中為純虛數,,故為實數,這等於是從閔氏時空轉入了歐氏時空,這會使得原先泛函

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。