欢迎来到天天文库
浏览记录
ID:19869293
大小:106.50 KB
页数:17页
时间:2018-10-07
《高中数学必修课程教学反思与建议》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、高中数学必修课程教学反思与建议福州格致中学陈言一.高中数学必修课程的构成及其定位必修课程是整个高中数学课程基础,包括5个模块,共10学分,是所有学生都要学习的内容。它的内容的确定遵循两个原则:一是满足未来公民的基本数学需求,二是为学生进一步的学习提供必要的数学准备。5个模块的内容为:A1:集合、函数概念与基本初等函数I(指数函数、对数函数、幂函数);A2:立体几何初步、平面解析几何初步;A3:算法初步、统计、概率;A4:基本初等函数II(三角函数)、平面上的向量、三角恒等变换。A5:解三角形;数列;不等式。二.教学实践中所遇到的问题1.课时安排的
2、理想化与实际教学之间的矛盾。对策:按照新课程的理念,依据新课标的基本要求确定教学目标,不要一次性到位,不要随意补充自认为很重要、高考必考的内容,否则就会出现上不完的情况。2.知识容量大,学生遗忘快。对策:培养对数学学习的兴趣,多反复,多提问,周练习中安排适量旧知识,这样可以既不花很多时间,又帮助学生记忆重要的知识点以及公式和定理。3.教材中安排了大量的实际问题,创设丰富的问题情境,有的实际问题过长,学生要花一定的时间来理解,造成一定的教学压力,对有些问题是否可以单刀直入,直奔主题?4.初高中数学内容的衔接问题。有些知识在初中已被删去,到了高中却十分重
3、要,这些内容如何处理呢?一种做法是利用开学初的时间进行学习,还有一种做法是,在需要用到的时候再做适当的补充与拓展.5.例、习题设计需进一步斟酌。新课程实施中,发现有些课本例题与习题不够配套三.必修2(各章)内容解析数学2包括立几初步、解几初步两部分内容,是整个必修内容中几何较集中的部分,另外两部分的“平面向量”置于数学4中、解三角形置于数学5中。课程对几何中的共同点有意识的突出来,即把几何定位于把握图形的能力,空间想象与几何直觉的能力,逻辑推理能力。新课程将知识产生、应用完整展现出来,特别重视直观感知、操作确认、抽象概括、归纳猜想的思维过程,在解几中
4、还涉及了度量计算。立体几何内容中的“空间几何体”主要是通过直观感知、操作确认的方式让学生认识人类生存的现实空间,通过空间图形,培养和发展学生的空间想象能力。在“点、直线、平面之间的位置关系”中,借助长方体模型,通过直观感知、操作确认先认识它们之间的位置关系,归纳关于平面、平行的一些公理以及直线与平面平行、平面与平面平行、直线与平面垂直、平面与平面垂直的判定定理,进而对直线与平面平行、平面与平面平行以及直线与平面垂直、平面与平面垂直的性质定理进行思辩论证,并且运用已获得的结论证明一些空间位置关系的简单命题,培养学生的推理论证能力、运用图形语言进行交流的
5、能力以及几何直观能力。解析几何的基本思想是“坐标法”。当我们用方程表示直线和圆,运用方程研究直线、圆的的位置关系,研究两条直线的交点、点到直线的距离、两条平行直线之间的距离等问题时,都需要把几何问题代数化,先用方程表示直线和圆,然后再通过代数运算解决有关的位置关系问题。教科书结合大量的例题,突出用坐标方法解决几何问题的“三部曲”。四.教学反思与建议1.随着教学的不断推进,反思必修课程的教学,有如下几点值得在以后的教学中借鉴:(1)对《标准》的理解有待进一步深化;(2)对教材的使用一定要结合《标准》灵活处理;(3)教学过程中关于应用计算器与计算机探索和
6、解决问题这方面有待进一步加强;(4)对学生的“双基”的要求,要重新审视,形成符合时代要求的“双基”。2.关于新课程内容的基础性。要与时俱进地审视“双基”随着时代和数学的发展,高中数学的基础知识和基本技能也在发生变化,教学中要与时俱进地审视“双基”,例如,统计,概率,导数,向量,算法等内容已经成为高中数学的基础知识,对原来的一些基础知识也要用新的理念来组织教学。要在平时教学中夯实“双基”要在学习课标中把握“双基”«普通高中数学课程标准»是高中数学的宏观指导性文件,它明确的规定了每一个模块的教学内容和教学要求,并附有教学说明与建议,对“双基”的内容与教学
7、要求也比较具体、翔实,因此,我们每一位教师要认真学习课程标准,做到对“双基”的内容与教学要求烂熟于心。只有这样,在“双基”教学中才能做到有的放失,既不“深究”又能“到位”。3.关于数学文化“探究与发现”的《互为反函数的两个函数图象之间的关系》、《解三角形进一步讨论》等“阅读与思考材料”《函数概念的发展历程》、《三角与天文学》、《对数的发明》等“探究与发现”《购房中的数学》4.《几何画板》的强大作图功能是我们学习的好帮手,但仅仅在课堂上演示,显然是不够的,更应当让学生独立操作,自己动手作图,那样的体验才更加真实。若是条件允许的学校,还可以在选修Ⅱ中开设
8、《几何画板》专题,让学生自己去探究数学问题。
此文档下载收益归作者所有