欢迎来到天天文库
浏览记录
ID:19856223
大小:717.00 KB
页数:18页
时间:2018-10-07
《一元二次方程能力拔高题》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一元二次方程培优专题复习考点一、概念(1)定义:①只含有一个未知数,并且②未知数的最高次数是2,这样的③整式方程就是一元二次方程。(2)一般表达式:⑶难点:如何理解“未知数的最高次数是2”:①该项系数不为“0”;②未知数指数为“2”;③若存在某项指数为待定系数,或系数也有待定,则需建立方程或不等式加以讨论典型例题:例1、下列方程中是关于x的一元二次方程的是()A、B、C、D、变式:当k时,关于x的方程是一元二次方程。例2、方程是关于x的一元二次方程,则m的值为。针对练习:★1、方程的一次项系数是,常数项是。★2、若方程是关于x的一元一次方程,⑴求
2、m的值:;⑵写出关于x的一元一次方程:。★★3、若方程是关于x的一元二次方程,则m的取值范围是。★★★4、若方程nxm+xn-2x2=0是一元二次方程,则下列不可能的是()A.m=n=2B.m=2,n=1C.n=2,m=1D.m=n=1考点二、方程的解⑴概念:使方程两边相等的未知数的值,就是方程的解。⑵应用:利用根的概念求代数式的值;典型例题:例1、已知的值为2,则的值为。例2、关于x的一元二次方程的一个根为0,则a的值为。例3、已知关于x的一元二次方程的系数满足,则此方程必有一根为。例4、已知是方程的两个根,是方程的两个根,则m的值为。针对练习
3、:★1、已知方程的一根是2,则k为,另一根是。★2、已知关于x的方程的一个解与方程的解相同。⑴求k的值;⑵方程的另一个解。★3、已知m是方程的一个根,则代数式。★★4、已知是的根,则。★★5、方程的一个根为()AB1CD★★★6、若。考点三、解法⑴方法:①直接开方法;②因式分解法;③配方法;④公式法⑵关键点:降次类型一、直接开方法:※※对于,等形式均适用直接开方法典型例题:例1、解方程:=0;例2、解关于x的方程:例3、若,则x的值为。针对练习:下列方程无解的是()A.B.C.D.类型二、因式分解法:※方程特点:左边可以分解为两个一次因式的积,右
4、边为“0”,※方程形式:如,,典型例题:例1、的根为()ABCD例2、若,则4x+y的值为。变式1:。变式2:若,则x+y的值为。变式3:若,,则x+y的值为。例3、方程的解为()A.B.C.D.例4、解方程:得例5、已知,则的值为。变式:已知,且,则的值为。针对练习:★1、下列说法中:①方程的二根为,,则②.③④⑤方程可变形为正确的有()A.1个B.2个C.3个D.4个★2、以与为根的一元二次方程是()A.B.C.D.★★3、⑴写出一个一元二次方程,要求二次项系数不为1,且两根互为倒数:⑵写出一个一元二次方程,要求二次项系数不为1,且两根互为相
5、反数:★★4、若实数x、y满足,则x+y的值为()A、-1或-2B、-1或2C、1或-2D、1或25、方程:的解是。6、已知,且,,求的值。类型三、配方法※在解方程中,多不用配方法;但常利用配方思想求解代数式的值或极值之类的问题。典型例题:例、已知x、y为实数,求代数式的最小值。针对练习:1、已知,则.2、若,则t的最大值为,最小值为。类型四、公式法⑴条件:⑵公式:,典型例题:例、选择适当方法解下列方程:⑴⑵⑶⑷⑸类型五、“降次思想”的应用⑴求代数式的值;⑵解二元二次方程组。典型例题:例1、已知,求代数式的值。例2、如果,那么代数式的值。例3、已
6、知是一元二次方程的一根,求的值。考点四、根的判别式根的判别式的作用:①定根的个数;②求待定系数的值;③应用于其它。典型例题:例1、若关于的方程有两个不相等的实数根,则k的取值范围是。例2、关于x的方程有实数根,则m的取值范围是()A.B.C.D.例3、已知关于x的方程(1)求证:无论k取何值时,方程总有实数根;(2)若等腰ABC的一边长为1,另两边长恰好是方程的两个根,求ABC的周长。例4、已知二次三项式是一个完全平方式,试求的值.例5、为何值时,方程组有两个不同的实数解?有两个相同的实数解?针对练习:1、当k时,关于x的二次三项式是完全平方式。
7、2、当取何值时,多项式是一个完全平方式?这个完全平方式是什么?3、已知方程有两个不相等的实数根,则m的值是.4、为何值时,方程组(1)有两组相等的实数解,并求此解;(2)有两组不相等的实数解;(3)没有实数解.5、当取何值时,方程的根与均为有理数?(2012山东德州中考,15,4,)若关于x的方程有实数解,那么实数a的取值范围是_____________.(2012湖北襄阳,12,3分)如果关于x的一元二次方程kx2-x+1=0有两个不相等的实数根,那么k的取值范围是A.k<B.k<且k≠0C.-≤k<D.-≤k<且k≠0考点五、方程类问题中的“
8、分类讨论”典型例题:例1、关于x的方程⑴有两个实数根,则m为,⑵只有一个根,则m为。例2、不解方程,判断关于x的方程根的情况。例3、如果
此文档下载收益归作者所有