北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案

北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案

ID:18913331

大小:3.40 MB

页数:70页

时间:2018-09-21

北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案_第1页
北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案_第2页
北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案_第3页
北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案_第4页
北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案_第5页
资源描述:

《北师大版高中数学选修2-1第三章《圆锥曲线与方程》word教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、北师大版高中数学选修2-1第三章《圆锥曲线与方程》全部教案扶风县法门高中姚连省第一课时3.1.1椭圆及其标准方程(一)一、教学目标:1、知识目标:掌握椭圆的定义及其标准方程,能正确推导椭圆的标准方程.2、能力目标:培养学生的动手能力、合作学习能力和运用所学知识解决实际问题的能力;培养学生运用类比、分类讨论、数形结合思想解决问题的能力.3、情感目标:激发学生学习数学的兴趣、提高学生的审美情趣、培养学生勇于探索,敢于创新的精神.二、教学重点:椭圆的定义和椭圆的标准方程.教学难点:椭圆标准方程的推导.三、教学方法:探究式教学法,即教师通过问题诱导→

2、启发讨论→探索结果,引导学生直观观察→归纳抽象→总结规律,使学生在获得知识的同时,能够掌握方法、提升能力.四、教学过程:(一)、复习引入:1.1997年初,中国科学院紫金山天文台发布了一条消息,从1997年2月中旬起,海尔·波普彗星将逐渐接近地球,过4月以后,又将渐渐离去,并预测3000年后,它还将光临地球上空1997年2月至3月间,许多人目睹了这一天文现象天文学家是如何计算出彗星出现的准确时间呢?原来,海尔·波普彗星运行的轨道是一个椭圆,通过观察它运行中的一些有关数据,可以推算出它的运行轨道的方程,从而算出它运行周期及轨道的的周长(说明椭圆

3、在天文学和实际生产生活实践中的广泛应用,指出研究椭圆的重要性和必要性,从而导入本节课的主题)2.复习求轨迹方程的基本步骤:3.手工操作演示椭圆的形成:取一条定长的细绳,把它的两端固定在画图板上的两点,当绳长大于两点间的距离时,用铅笔把绳子拉近,使笔尖在图板上慢慢移动,就可以画出一个椭圆分析:(1)轨迹上的点是怎么来的?(2)在这个运动过程中,什么是不变的?答:两个定点,绳长即不论运动到何处,绳长不变(即轨迹上与两个定点距离之和不变)(二)、探究新课:1椭圆定义:平面内与两个定点的距离之和等于常数(大于)的点的轨迹叫作椭圆,这两个定点叫做椭圆的

4、焦点,两焦点间的距离叫做椭圆的焦距注意:椭圆定义中容易遗漏的两处地方:(1)两个定点---两点间距离确定(2)绳长--轨迹上任意点到两定点距离和确定思考:在同样的绳长下,两定点间距离较长,则所画出的椭圆较扁(线段)在同样的绳长下,两定点间距离较短,则所画出的椭圆较圆(圆)由此,椭圆的形状与两定点间距离、绳长有关(为下面离心率概念作铺垫)2.根据定义推导椭圆标准方程:取过焦点的直线为轴,线段的垂直平分线为轴设为椭圆上的任意一点,椭圆的焦距是().则,又设M与距离之和等于()(常数),,化简,得,由定义,令代入,得,两边同除得,此即为椭圆的标准方

5、程它所表示的椭圆的焦点在轴上,焦点是,中心在坐标原点的椭圆方程其中注意若坐标系的选取不同,可得到椭圆的不同的方程如果椭圆的焦点在轴上(选取方式不同,调换轴)焦点则变成,只要将方程中的调换,即可得,也是椭圆的标准方程理解:所谓椭圆标准方程,一定指的是焦点在坐标轴上,且两焦点的中点为坐标原点;在与这两个标准方程中,都有的要求,如方程就不能肯定焦点在哪个轴上;分清两种形式的标准方程,可与直线截距式类比,如中,由于,所以在轴上的“截距”更大,因而焦点在轴上(即看分母的大小)(三)、探析例题:例1、写出适合下列条件的椭圆的标准方程:⑴两个焦点坐标分别是

6、(-4,0)、(4,0),椭圆上一点P到两焦点的距离之和等于10;⑵两个焦点坐标分别是(0,-2)和(0,2)且过(,)解:(1)因为椭圆的焦点在轴上,所以设它的标准方程为所以所求椭圆标准方程为因为椭圆的焦点在轴上,所以设它的标准方程为由椭圆的定义知,+ 又所以所求标准方程为另法:∵∴可设所求方程,后将点(,)的坐标代入可求出,从而求出椭圆方程点评:题(1)根据定义求若将焦点改为(0,-4)、(0,4)其结果如何;题(2)由学生的思考与练习,总结有两种求法:其一由定义求出长轴与短轴长,根据条件写出方程;其二是由已知焦距,求出长轴与短轴的关系,

7、设出椭圆方程,由点在椭圆上的条件,用待定系数的办法得出方程(四)、课堂练习:1椭圆上一点P到一个焦点的距离为5,则P到另一个焦点的距离为()A.5B.6C.4D.102.椭圆的焦点坐标是()A.(±5,0)B.(0,±5)C.(0,±12)D.(±12,0)3.已知椭圆的方程为,焦点在轴上,则其焦距为()A.2B.2C.2D.4.,焦点在y轴上的椭圆的标准方程是 5.方程表示椭圆,则的取值范围是()A.B.∈Z)C.D.∈Z)参考答案:1.A2.C3.A4.5.B(五)、小结:本节课学习了椭圆的定义及

8、标准方程,应注意以下几点:①椭圆的定义中,;②椭圆的标准方程中,焦点的位置看,的分母大小来确定;③、、的几何意义(六)、课后作业:1.判断下列方程是否表上椭圆,若是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。