物理极值问题的求法

物理极值问题的求法

ID:18897521

大小:87.50 KB

页数:3页

时间:2018-09-26

物理极值问题的求法_第1页
物理极值问题的求法_第2页
物理极值问题的求法_第3页
资源描述:

《物理极值问题的求法》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、物理极值问题的求法孙莲红江苏泗洪县新星中学江苏泗洪223900运用数学工具处理物理问题的能力是高考重点考查的五种能力之一,其中极值的计算在教学中频繁出现。因为极值问题范围广、习题多,会考、高考又经常考查,应该得到足够重视。另外物理极值,实质是针对某一物理现象的动态范围、发展变化趋势及其极限,这是由物理条件所制约的。物理极值,经常表现为物理约束条件下的最大或最小值,这与数学极值有本质的区别。就思维表现看,求极值过程是归纳和演绎综合运用过程。在错综复杂的变化条件中,要归纳出一般的状态表现,又要在此基础上,经演绎推理,寻求特殊的极端模型。

2、这也是建立理想化模型,也要理想化。显然,解极值过程是综合运用几种常规的思维方法的高层次的思维过程。下面重点对数学方法求解物理极值问题作些说明。(一)利用三角函数求极值如果所求物理量表达式中含有三角函数,可利用三角函数的极值求解。若所求物理量表达式可化为“y=Asin”的形式,则y=Asin2α,在=45º时,y有极值。例1:如图1所示。一辆四分之一圆弧小车停在不光滑水平地面上,质量为m的小球从静止开始由车顶无摩擦滑下,且小车始终保持静止状态,试分析:当小球运动到什么位置时,地面对小车的摩擦力最大?最大值是多少?OmgN图1[解析]:

3、设圆弧半径为R,当小球运动到重力mg与半径夹角为θ时,速度为V,根据机械能守恒定律和牛顿第二定律有:解得小球对小车的压力为:N=3mgcosθ,其水平分量为:Nx=3mgsinθcosθ=根据平衡条件,地面对小车的静摩擦力水平向右,大小为:f=Nx=可以看出:当sin2θ=1,即θ=45º时,地面对小车的静摩擦力最大,其值为:fmax=(二)用图象法求极值通过分析物理过程遵循的物理规律,找到变量之间的函数关系,作出其图象,由图象可求得极值。例2:甲、乙两物体同时、同地、同向由静止出发,甲做匀加速直线运动,加速度为4米/秒2,4秒后改

4、为匀速直线运动;乙做匀加速直线运动,加速度为2米/秒2,10秒后改为匀速直线运动,求乙追上甲之前它们之间的最大距离。[解析]:运用物理规律和图形相结合求极值.是常用的一种比较直观的方法。由题意可知,4秒后甲做匀速直线运动的速度为:V甲=a甲t甲=44=16(m/s)。乙10秒后做匀速运动的速度为:V乙=a乙t乙=210=20(m/s)。481251020V(m/s)t/s0A(8;16)甲乙16图2可画出v—t如上图4所示。图线在A(8,16)点相交,这表明在t=8秒时,两物体的速度相等,因此.在t=8秒时,两者间的距离最大。此时两

5、图线所围观积之差,就是两者间的最大距离。即Smax=416+416—816=32(m)。 (三)利用一元二次方程判别式△=b2-4ac≥O求极值对于二次函数y=ax2+bx+c,用判别式法利用Δ=b2-4ac≥0。(式中含y)若y≥A,则ymin=A。若y≤A,则ymax=A。例3:在一平直较窄的公路上,一辆汽车正以22m/s的速度匀速行驶,正前方有一辆自行车以4m/s的速度同向匀速行驶,汽车刹车的最大加速度为6m/s2,试分析两车不相撞的条件。[解析]要使二者不相撞,则二者在任一时间内的位移关系应满足V0t-(式中S为汽车刹车时与

6、自行车间距)代入数据整理得:3t2-18t+S>0,显然,当满足=b2-4ac0,即=182-43S0得:S27m,Smin=27m。当汽车刹车时与自行车间距为27米时是汽车不与自行车相撞的条件。(四)利用配方法求极值对于二次函数y=ax2+bx+c,函数解析式经配方可变为y=(x-A)2+常数:(1)当x=A时,常数为极小值;或者函数解析式经配方可变为y=-(x-A)2+常数。(2)当x=A时,常数为极大值。例4:如图4所示,光滑轨道竖直放置,半圆部分的半径为R,在水平轨道上停着一质量为M=0.99kg的木块。一质量为0.01lk

7、g的子弹以v=400m/s的水平速度射入木块中,然后一起运动到最高点水平抛出。问圆半径R为多大时平抛出的距离最远并?求此最大值。[解析]:子弹和木快碰后一起运动,则碰后速度v’=mv/(m+M)=4m/s。当木块运动到最高点时,由机械能守恒得此时速度v1满足:(m+M)v12/2=(m+M)v’2/2-2(m+M)gR得v1=(16—40R)1/2(单位略),而t可以用平抛的知识求解得到,那么平抛距离可写成:s=v1t=4(0.4R—R2)1/2≤0.8m(R=0.2m时取得最大值)。 (五)其他求极值方法(1)利用排列组合求极值;

8、(2)利用临界条件求极值;(3)利用几何法求极值;上述方法中可看出灵活应用数学手段是解题的保证。但题中关键条件要靠物理分析得出,其结果也必是物理解。物理极值问题要求有很强的思维能力,应当有针对性地训练,有意识地掌握几种求极值的方法,是

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。