欢迎来到天天文库
浏览记录
ID:18727097
大小:161.00 KB
页数:5页
时间:2018-09-20
《2018北师大版数学八年级下册1.2.1《勾股定理及其逆定理》教案》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2直角三角形第1课时勾股定理及其逆定理【知识与技能】1.掌握直角三角形的性质定理(勾股定理)及判定定理的证明方法,并能运用定理解决与直角三角形有关的问题.2.结合具体例子了解逆命题的概念,会识别两个互逆命题,知道原命题成立,其逆命题不一定成立.【过程与方法】进一步经历用几何符号和图形描述命题的条件和结论的过程,建立初步的符号感,发展抽象思维【情感态度】体验生活中数学的应用价值,感受数学与人类生活的密切联系,激发学生学数学、用数学的兴趣.【教学重点】掌握直角三角形的性质定理(勾股定理)及判定定理的证明方
2、法.【教学难点】运用定理解决与直角三角形有关的问题一.情景导入,初步认知我们学过直角三角形的哪些性质和判定方法?与同伴交流.【教学说明】回顾旧知,也为后续探索提供了铺垫.二.思考探究,获取新知探究1:直角三角形的性质和判定直角三角形的两个锐角有什么关系?为什么?如果一个三角形的两个锐角互余,那么这个三角形是什么三角形?为什么?【教学说明】让学生在解决问题的同时,总结直角三角形的一般性质.【归纳结论】①直角三角形的两个锐角互余;②有两个角互余的三角形是直角三角形.探究2:勾股定理及其逆定理.教材中曾利用
3、数方格和割补图形的方法得到了勾股定理.如果利用公理及由其推导出的定理,能够证明勾股定理吗?【教学说明】教师引导学生思考,写出证明过程.【归纳结论】勾股定理:直角三角形两条直角边的平方和等于斜边的平方.勾股逆定理:如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形探究3:互逆命题和互逆定理.观察上面两个命题,它们的条件和结论之间有怎样的关系?在前面的学习中还有类似的命题吗?上面两个定理的条件和结论互换了位置,即勾股定理的条件是第二个定理的结论,结论是第二个定理的条件.在前面的学习中还有类
4、似的命题吗?【教学说明】教师应注意给予适度的引导,学生若出现语言上不严谨时,要先让这个疑问交给学生来剖析,然后再总结【归纳结论】在两个命题中,如果一个命题条件和结论分别是另一个命题的结论和条件,那么这两个命题称为互逆命题,其中一个命题称为另一个命题的逆命题如果有些命题,原命题是真命题,逆命题也是真命题,那么我们称它们为互逆定理.三.运用新知,深化理解1.说出下列命题的逆命题,并判断每对命题的真假:(1)四边形是多边形;(2)两直线平行,同旁内角互补;(3)如果ab=0,那么a=0,b=0.【分析】互逆
5、命题和互逆定理的概念,学生接受起来应不会有什么困难,尤其是对以“如果……那么……”形式给出的命题,写出其逆命题较为容易,但对于那些不是以这种形式给出的命题,叙述其逆命题有一定困难.可先分析命题的条件和结论,然后写出逆命题解:(1)多边形是四边形.原命题是真命题,而逆命题是假命题.(2)同旁内角互补,两直线平行.原命题与逆命题同为真.(3)如果a=0,b=0,那么ab=0.原命题是假命题,而逆命题是真命题.2.如图,BA⊥DA于A,AD=12,DC=9,CA=15,求证:BA∥DC.证明:在△ADC中,
6、AD=12,DC=9,CA=15.∵AD2+DC2=CA2,∴△ADC是直角三角形.(如果三角形两边的平方和等于第三边的平方,那么这个三角形是直角三角形)∴AD⊥CD,∵BA⊥DA,∴BA∥DC.3.某校把一块形状为直角三角形的废地开辟为生物园,如图5所示,∠ACB=90°,AC=80米,BC=60米,若线段CD是一条小渠,且D点在边AB上,已知水渠的造价为10元/米,问D点在距A点多远处时,水渠的造价最低?最低造价是多少?解:当CD⊥AB时,CD最短,造价最低.∵∠ACB=90°,AC=80,BC=
7、60,∴AB=100.设AD=x,则BD=100-x.∵在Rt△ADC与Rt△BDC中,∴CD2=AC2-AD2,CD2=BC2-BD2.∴AC2-AD2=BC2-BD2.∴802-x2=602-(100-x)2.解得:x=64.∴在Rt△ADC中,CD=48.∴最低造价是:48×10=480(元).你还能用其他方法求出CD的长吗?(提示:用面积法)4.已知:如图,在△ABC中,∠C=90°,BC=a,AC=b,AB=c.求证:a2+b2=c2.证明:延长CB至D,使BD=b,作∠EBD=∠A,并取B
8、E=c,连接ED、AE(如图),则△ABC≌△BED.∴∠BDE=90°,ED=a(全等三角形的对应角相等,对应边相等).∴四边形ACDE是直角梯形.∴S梯形ACDE=(a+b)(a+b)=(a+b)2.∴∠ABE=180°-(∠ABC+∠EBD)=180°-90°=90°,AB=BE.∴S△ABE=c2∵S梯形ACDE=S△ABE+S△ABC+S△BED,∴(a+b)2=c2+ab+ab,即a2+ab+b2=c2+ab,∴a2+b2=c2四.师生互动,
此文档下载收益归作者所有