欢迎来到天天文库
浏览记录
ID:18377062
大小:210.50 KB
页数:9页
时间:2018-09-17
《中考总复习数学专题优化训练方程、不等式》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、方程、不等式复习专题一、考法、考点分析1、考法分析:方程与不等式的综合应用是中考数学重点考查的内容之一,新课程在数与代数领域的一个亮点就是加强了知识之间的内在联系的研究,方程与不等式是紧密联系的数学知识,复习时,要站在知识整体的高度把握方程式和不等式的知识内容。2、考点课标要求:(1)根据具体问题中的数量关系,列出方程,体会方程是刻画现实世界的一个有效的数学模型。(2)经历用观察、画图或计算器等手段估计方程解的过程。(3)会解一元一次方程、简单的二元一次方程组、可化为一元一次方程的分式方程(方程中的分式不超过两个)(4)理解配方法,会用因式分解法
2、、公式法、配方法解简单的数字系数的一元二次方程。(5)能根据具体问题的实际意义,检验结果是否正确。(6)一元一次不等式(组)的有关概念、解法和应用,题型多以填空、选择为主,难度不大,另外关于列一元一次不等式(组)解决实际问题的考题在中考中出现的几率也较大重点、难点、疑点1.方程的概念;方程的解法;列方程解应用题的一般步骤:①审:审清题意;②设:设未知数;③找:找出相等关系;④列:列出方程;⑤解:解这个分式方程;⑥验:检验,既要验证根是否是原分式方程的根,又要验是否符合题意;⑦答:写出答案2.不等式(组)的有关概念;不等式(组)的解法;解(解集)的
3、表示;列不等式(不等式组)解应用题:①审:审清题意;②设:设未知数;③找:找出不等关系;④列:列出不等式(组);⑤解:解不等式(组);⑥答:写出答案二、知识点归(1)方程:含有未知数的等式叫方程。(2)-9-一元一次方程:含有一个未知数,且未知项的次数为1,这样的方程叫一元一次方程。(3)二元一次方程:含有两个未知数,且未知项的次数为1,这样的方程叫二元一次方程,理解时应注意:①二元一次方程左右两边的代数式必须是整式,例如等,都不是二元一次方程;②二元一次方程必须含有两个未知数;③二元一次方程中的“一次”是指含有未知数的项的次数,而不是某个未知数
4、的次数,如xy=2不是二元一次方程。x=ay=b(4)二元一次方程的解:能使二元一次方程左右两边的值相等的一对未知数的值叫做二元一次方程的解,通常用的形式表示,在任何一个二元一次方程中,如果把其中的一个未知数任取一个数,都可以通过方程求得与之对应的另一个未知数的值。因此,任何一个二元一次方程都有无数解。2x-y=1x+y=23x-y=5x=2x+2y=33x-y=12x+4y=6x=2(5)二元一次方程组:①由两个或两个以上的整式方程(即方程两边的代数式都是整式)组成,常用“”把这些方程联合在一起;②整个方程组中含有两个不同的未知数,且方程组中同
5、一未知数代表同一数量;③方程组中每个方程经过整理后都是一次方程,如:等都是二元一次方程组。(6)二元一次方程组的解:注意:方程组的解满足方程组中的每个方程,而每个方程的解不一定是方程组的解。(7)会检验一对数值是不是一个二元一次方程组的解检验方法:把一对数值分别代入方程组的、两个方程,如果这对未知数既满足方程,又满足方程,则它就是此方程组的解。(8)二元一次方程组的解法:解题思想:将二元变成一元;代入消元法加减消元法2、不等式具体知识点(1)不等式:用不等号表示不相等关系的式子.(2)不等式的解:能使不等式成立的未知数的值.(3)不等式的解集:一
6、个不等式所有解的集合.(4)解不等式:求出不等式解集的过程.(5)一元一次不等式:只含有一个未知数且未知数的次数是1的不等式叫一元一次不等式(其标准形式为ax-b>0或ax-b<0,(a≠0).-9-(6)一元一次不等式组:两个或两个以上含有相同未知数的一元一次不等式所组成的一组不等式,称为一元一次不等式组.(7)不等式组的解集:组成不等式组的各个不等式的解集的公共部分,叫这个不等式组的解集.(8)解不等式组:求出不等式组解集的过程.(9)不等式组解集的取法:大大取大,小小取小,一大一小取公共部分.三、典例解析例1.解方程:(1)2x-(x+3)
7、=-x+3(2)+=2(3)(x+15)=-(x-7)解:(1)2x-(x+3)=-x+3去分母,得6x-2(x+3)=-3x+9--------------等式性质,两边同时乘3去括号,得6x-2x-6=-3x+9-----------去括号法则移项,得6x-2x+3x=9+6-----------等式性质,两边同时加上6、3x合并同类项,得7x=15-----------合并同类项法则未知数系数化为1,得x=-----------两边同时除以7【点评】解一元一次方程作为基本技能要熟练掌握,同时还要注意对解方程各个步骤地灵活处理。例2.解方程:
8、(1)2%x-5+5%x=20%,(2)-=2解:(1)去分母,得2x-500+5x=20移项并整理,得7x=520,系数化为1,得x=
此文档下载收益归作者所有