《导数及其应用》知识点总结

《导数及其应用》知识点总结

ID:17638969

大小:336.50 KB

页数:4页

时间:2018-09-04

《导数及其应用》知识点总结_第1页
《导数及其应用》知识点总结_第2页
《导数及其应用》知识点总结_第3页
《导数及其应用》知识点总结_第4页
资源描述:

《《导数及其应用》知识点总结》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、《导数及其应用》知识点总结一、导数的概念和几何意义1.函数的平均变化率:函数在区间上的平均变化率为:。2.导数的定义:设函数在区间上有定义,,若无限趋近于0时,比值无限趋近于一个常数A,则称函数在处可导,并称该常数A为函数在处的导数,记作。函数在处的导数的实质是在该点的瞬时变化率。3.求函数导数的基本步骤:(1)求函数的增量;(2)求平均变化率:;(3)取极限,当无限趋近与0时,无限趋近与一个常数A,则.4.导数的几何意义:函数在处的导数就是曲线在点处的切线的斜率。由此,可以利用导数求曲线的切线方程,具体求法分两步:(1

2、)求出在x0处的导数,即为曲线在点处的切线的斜率;(2)在已知切点坐标和切线斜率的条件下,求得切线方程为。当点不在上时,求经过点P的的切线方程,可设切点坐标,由切点坐标得到切线方程,再将P点的坐标代入确定切点。特别地,如果曲线在点处的切线平行与y轴,这时导数不存在,根据切线定义,可得切线方程为。5.导数的物理意义:质点做直线运动的位移S是时间t的函数,则表示瞬时速度,表示瞬时加速度。二、导数的运算1.常见函数的导数:(1)(k,b为常数);(2)(C为常数);(3);(4);4(5);(6);(7);(8)(α为常数);

3、(9);(10);(11);(12);(13);(14)。2.函数的和、差、积、商的导数:(1);(2)(C为常数);(3);(4)。3.简单复合函数的导数:若,则,即。三、导数的应用1.求函数的单调性:利用导数求函数单调性的基本方法:设函数在区间内可导,(1)如果恒,则函数在区间上为增函数;(2)如果恒,则函数在区间上为减函数;(3)如果恒,则函数在区间上为常数函数。利用导数求函数单调性的基本步骤:①求函数的定义域;②求导数;③解不等式,解集在定义域内的不间断区间为增区间;④解不等式,解集在定义域内的不间断区间为减区间

4、。反过来,也可以利用导数由函数的单调性解决相关问题(如确定参数的取值范围):设函数在区间内可导,4(1)如果函数在区间上为增函数,则(其中使的值不构成区间);(2)如果函数在区间上为减函数,则(其中使的值不构成区间);(3)如果函数在区间上为常数函数,则恒成立。2.求函数的极值:设函数在及其附近有定义,如果对附近的所有的点都有(或),则称是函数的极小值(或极大值)。可导函数的极值,可通过研究函数的单调性求得,基本步骤是:(1)确定函数的定义域;(2)求导数;(3)求方程的全部实根,,顺次将定义域分成若干个小区间,并列表:

5、x变化时,和值的变化情况:x…正负0正负0正负单调性单调性单调性(4)检查的符号并由表格判断极值。3.求函数的最大值与最小值:如果函数在定义域I内存在,使得对任意的,总有,则称为函数在定义域上的最大值。函数在定义域内的极值不一定唯一,但在定义域内的最值是唯一的。求函数在区间上的最大值和最小值的步骤:(1)求在区间上的极值;(2)将第一步中求得的极值与比较,得到在区间上的最大值与最小值。4.解决不等式的有关问题:(1)不等式恒成立问题(绝对不等式问题)可考虑值域。的值域是时,4不等式恒成立的充要条件是,即;不等式恒成立的充

6、要条件是,即。的值域是时,不等式恒成立的充要条件是;不等式恒成立的充要条件是。(2)证明不等式可转化为证明,或利用函数的单调性,转化为证明。5.导数在实际生活中的应用:实际生活求解最大(小)值问题,通常都可转化为函数的最值.在利用导数来求函数最值时,一定要注意,极值点唯一的单峰函数,极值点就是最值点,在解题时要加以说明。4

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。