欢迎来到天天文库
浏览记录
ID:17354079
大小:465.00 KB
页数:22页
时间:2018-08-30
《1实变函数论的内容》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、绪 论 1.实变函数论的内容 顾名思义,实变函数论即讨论以实数为变量的函数,这样的内容早在中学都已学过,中学学的函数概念都是以实数为变量的函数,大学的数学分析,常微分方程都是研究的以实数为变量的函数,那么实函还有哪些可学呢?简单地说:实函只做一件事,那就是恰当的改造积分定义使得更多的函数可积。 何以说明现有的积分范围小了呢?因为 D(x)= 这样形式极为简单的函数都不可积,所以我们认为积分范围狭窄。 如何改造积分定义来达到拓广积分范围的目的呢?让我们先剖析一下造成这一缺陷的根本原因在何处,只有先找准病根,然后才能对症
2、下药。由数学分析知:对任意分划T:a=x<x<x<......<x=b,由于任意一个正长度区间内既有有理数又有无理数,所以恒有: S(T,D)-s(T,D)≡1-0=1如果分划不是这样呆板,这样苛刻地要求一定要分成区间的话,还是有可能满足大小和之差任意小的。比如,只要允许将有理数分在一起,将无理数分在一起,那么大小和之差就等于零了。这就是问题的着眼点,首先让分化概念更加广泛,更加灵活,从而可将函数值接近的分在一起以保证大小和之差任意小。即D:E=E[yf3、]mE<ε,只须[y-y]<ε,这里mE[yf4、测度之和(即可列可加性成立)。只能对部分集合规定满足这两点基本要求的测度,这一部分集合便是可测集合(即第四章内容)。那么哪些函数才能保证形如E[yf5、积分的原始思路,也是传统教材介绍Lebesgue积分定义的普遍方法。鉴于人们在研究可测函数时发现:可测函数的本质特征是正、负部函数的下方图形均为可测集。结合Riemann积分的几何意义,使我们自然想到:与其说测度推广了定义域的长度(面积、体积)概念后使得我门作大、小和更加灵活多样,以达推广积分的目的,不如说由于定义域与实数域的乘积空间的面积(体积)概念的推广,使得大量的象Dinichni函数那样图形极其不规则的下方图形可以求面积(体积)了,从而拓宽了可积范围。于是我们在本教材中采取直接规定其测度之差为积分值(如果差存在的话)的办法,该定义简单、明了、直观。既有效地避免了分划6、、大(小)和、确界概念的繁琐,又成功地回避了先在测度有限,函数有界条件下讨论积分性质,然后推广到测度无限,函数无界的一般情形的重复、哆嗦。 2.实变函数论的特点 由以上叙述可以看出《实变函数论》内容单纯,学习起来应该简单,然而实际情况却大相径庭,各届同学都叫困难。原因在何处呢?原因在于高度抽象,理论性强。 抽象到什么程度呢?仅据两例说明之: 一是“似是而非”。 例1:若许多同学站成一列,且男女生交叉排列,任意两个男生中间有女生,任意两个女生中间有男生,在其中任取一个片段,男女生的个数无非有三种可能:或男女生一样多或男生多一个或女生多一个,也就是说在任一片段中7、男女生个数至多相差一个。直线上的有理数、无理数表面看来很类似,任意两个有理数中间有无理数,任意两个无理数中间有有理数,在其中任取一节线段,有理数、无理数的个数似乎无非只有三种可能:或有理数、无理数一样多或有理数多一个或无理数多一个,也就是说在任一片段中有理数、无理数个数至多相差一个。但严密的逻辑推理告诉我们:这种说法是错误的,事实上,有理数比无理数少得多。少到什么程度?有理数相对无理数而言是那样的微不足道,有他不多,无他不少。即无理数居然与实数一样多。 二是“似非而是” 例2:有理数在直线上密密麻麻,自然数在直
3、]mE<ε,只须[y-y]<ε,这里mE[yf4、测度之和(即可列可加性成立)。只能对部分集合规定满足这两点基本要求的测度,这一部分集合便是可测集合(即第四章内容)。那么哪些函数才能保证形如E[yf5、积分的原始思路,也是传统教材介绍Lebesgue积分定义的普遍方法。鉴于人们在研究可测函数时发现:可测函数的本质特征是正、负部函数的下方图形均为可测集。结合Riemann积分的几何意义,使我们自然想到:与其说测度推广了定义域的长度(面积、体积)概念后使得我门作大、小和更加灵活多样,以达推广积分的目的,不如说由于定义域与实数域的乘积空间的面积(体积)概念的推广,使得大量的象Dinichni函数那样图形极其不规则的下方图形可以求面积(体积)了,从而拓宽了可积范围。于是我们在本教材中采取直接规定其测度之差为积分值(如果差存在的话)的办法,该定义简单、明了、直观。既有效地避免了分划6、、大(小)和、确界概念的繁琐,又成功地回避了先在测度有限,函数有界条件下讨论积分性质,然后推广到测度无限,函数无界的一般情形的重复、哆嗦。 2.实变函数论的特点 由以上叙述可以看出《实变函数论》内容单纯,学习起来应该简单,然而实际情况却大相径庭,各届同学都叫困难。原因在何处呢?原因在于高度抽象,理论性强。 抽象到什么程度呢?仅据两例说明之: 一是“似是而非”。 例1:若许多同学站成一列,且男女生交叉排列,任意两个男生中间有女生,任意两个女生中间有男生,在其中任取一个片段,男女生的个数无非有三种可能:或男女生一样多或男生多一个或女生多一个,也就是说在任一片段中7、男女生个数至多相差一个。直线上的有理数、无理数表面看来很类似,任意两个有理数中间有无理数,任意两个无理数中间有有理数,在其中任取一节线段,有理数、无理数的个数似乎无非只有三种可能:或有理数、无理数一样多或有理数多一个或无理数多一个,也就是说在任一片段中有理数、无理数个数至多相差一个。但严密的逻辑推理告诉我们:这种说法是错误的,事实上,有理数比无理数少得多。少到什么程度?有理数相对无理数而言是那样的微不足道,有他不多,无他不少。即无理数居然与实数一样多。 二是“似非而是” 例2:有理数在直线上密密麻麻,自然数在直
4、测度之和(即可列可加性成立)。只能对部分集合规定满足这两点基本要求的测度,这一部分集合便是可测集合(即第四章内容)。那么哪些函数才能保证形如E[yf5、积分的原始思路,也是传统教材介绍Lebesgue积分定义的普遍方法。鉴于人们在研究可测函数时发现:可测函数的本质特征是正、负部函数的下方图形均为可测集。结合Riemann积分的几何意义,使我们自然想到:与其说测度推广了定义域的长度(面积、体积)概念后使得我门作大、小和更加灵活多样,以达推广积分的目的,不如说由于定义域与实数域的乘积空间的面积(体积)概念的推广,使得大量的象Dinichni函数那样图形极其不规则的下方图形可以求面积(体积)了,从而拓宽了可积范围。于是我们在本教材中采取直接规定其测度之差为积分值(如果差存在的话)的办法,该定义简单、明了、直观。既有效地避免了分划6、、大(小)和、确界概念的繁琐,又成功地回避了先在测度有限,函数有界条件下讨论积分性质,然后推广到测度无限,函数无界的一般情形的重复、哆嗦。 2.实变函数论的特点 由以上叙述可以看出《实变函数论》内容单纯,学习起来应该简单,然而实际情况却大相径庭,各届同学都叫困难。原因在何处呢?原因在于高度抽象,理论性强。 抽象到什么程度呢?仅据两例说明之: 一是“似是而非”。 例1:若许多同学站成一列,且男女生交叉排列,任意两个男生中间有女生,任意两个女生中间有男生,在其中任取一个片段,男女生的个数无非有三种可能:或男女生一样多或男生多一个或女生多一个,也就是说在任一片段中7、男女生个数至多相差一个。直线上的有理数、无理数表面看来很类似,任意两个有理数中间有无理数,任意两个无理数中间有有理数,在其中任取一节线段,有理数、无理数的个数似乎无非只有三种可能:或有理数、无理数一样多或有理数多一个或无理数多一个,也就是说在任一片段中有理数、无理数个数至多相差一个。但严密的逻辑推理告诉我们:这种说法是错误的,事实上,有理数比无理数少得多。少到什么程度?有理数相对无理数而言是那样的微不足道,有他不多,无他不少。即无理数居然与实数一样多。 二是“似非而是” 例2:有理数在直线上密密麻麻,自然数在直
5、积分的原始思路,也是传统教材介绍Lebesgue积分定义的普遍方法。鉴于人们在研究可测函数时发现:可测函数的本质特征是正、负部函数的下方图形均为可测集。结合Riemann积分的几何意义,使我们自然想到:与其说测度推广了定义域的长度(面积、体积)概念后使得我门作大、小和更加灵活多样,以达推广积分的目的,不如说由于定义域与实数域的乘积空间的面积(体积)概念的推广,使得大量的象Dinichni函数那样图形极其不规则的下方图形可以求面积(体积)了,从而拓宽了可积范围。于是我们在本教材中采取直接规定其测度之差为积分值(如果差存在的话)的办法,该定义简单、明了、直观。既有效地避免了分划
6、、大(小)和、确界概念的繁琐,又成功地回避了先在测度有限,函数有界条件下讨论积分性质,然后推广到测度无限,函数无界的一般情形的重复、哆嗦。 2.实变函数论的特点 由以上叙述可以看出《实变函数论》内容单纯,学习起来应该简单,然而实际情况却大相径庭,各届同学都叫困难。原因在何处呢?原因在于高度抽象,理论性强。 抽象到什么程度呢?仅据两例说明之: 一是“似是而非”。 例1:若许多同学站成一列,且男女生交叉排列,任意两个男生中间有女生,任意两个女生中间有男生,在其中任取一个片段,男女生的个数无非有三种可能:或男女生一样多或男生多一个或女生多一个,也就是说在任一片段中
7、男女生个数至多相差一个。直线上的有理数、无理数表面看来很类似,任意两个有理数中间有无理数,任意两个无理数中间有有理数,在其中任取一节线段,有理数、无理数的个数似乎无非只有三种可能:或有理数、无理数一样多或有理数多一个或无理数多一个,也就是说在任一片段中有理数、无理数个数至多相差一个。但严密的逻辑推理告诉我们:这种说法是错误的,事实上,有理数比无理数少得多。少到什么程度?有理数相对无理数而言是那样的微不足道,有他不多,无他不少。即无理数居然与实数一样多。 二是“似非而是” 例2:有理数在直线上密密麻麻,自然数在直
此文档下载收益归作者所有