资源描述:
《2004-2005学年秋季学期工科数学分析答案》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、哈尔滨工业大学2004/2005学年秋季学期姓名:班级:学号:工科数学分析期末考试试卷(答案)试题卷(A)考试形式(开、闭卷):闭答题时间:150(分钟)本卷面成绩占课程成绩70%题号一二三四五六七八卷面总分平时成绩课程总成绩分数得分一.选择题(每题2分,共10分)1.下列叙述中不正确者为(D)(A)如果数列收敛,那么数列一定有界。(B)如果,则一定有。(C)在点处可导的充要条件是在点处可微。(D)如果函数在点处导数为,则必在该点处取得极值。2.设在[0,1]上则下列不等式正确者为(B)(A)(B)(C)(D)3.若在上可积,则下列叙述中错误者为(D)(A)连续(B)在上可积
2、officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integratedoriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedonlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,thirdDivision.Integrationofpublictransportservicesisnotyetestablishe
3、d第1页(共7页)(C)在上由界(D)在上连续4.若,则(D)(A)(B)(C)(D)遵守考试纪律注意行为规范5.(D)(A)(B)(C)(D)得分二.填空题(每题2分,共10分)1.的间断点为:,其类型为:第一类间断点。2.的全部渐近线方程为:。3.摆线处的切线方程为:。4.=:1。5.设在上可导,,officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integratedoriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedo
4、nlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,thirdDivision.Integrationofpublictransportservicesisnotyetestablished第2页(共7页)则=:得分三.计算下列各题:(每小题4分,本题满分20分)1.若,求解:2,则2.,解:,3.解:==4.解:officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integrate
5、doriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedonlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,thirdDivision.Integrationofpublictransportservicesisnotyetestablished第3页(共7页)5.已知,求解:=,所以。故四.解答下列各题:(每小题5分,本题满分10分)得分1.已知数列,,求证:收敛,并且证明:1)证有界因为
6、,所以。假设,则。故有界。2)证单调因为,故为单调上升数列。由1)和2)知道收敛。设,由,所以有解得。而且为单调递增数列,所以。故。officiallyestablishedonJuly1,2013,Yibincity,formerlyknownasthebus,integratedoriginalrongzhoubuscompanyinYibincityandMetrobuscompany,formedonlyinYibincityofaState-ownedpublictransportenterprises,thecompanyconsistsofoneortwo,th
7、irdDivision.Integrationofpublictransportservicesisnotyetestablished第4页(共7页)2.设,曲线与三条直线所围平面部分绕x轴旋转成的旋转体的体积为取何值时,最大?解:,由得,。当时,故当时,达到极大值,且为最大值。五:证明下列各题:(1,2题各4分,3,4题各6分,本题满分20分)得分1.证明方程至少有一个不超过的正根。证明:设,显然它在上连续。(i)若,则即为满足条件的根。(ii)若,则。而,由零点定理知存在,使得。即为满足条件的根。第