欢迎来到天天文库
浏览记录
ID:1508914
大小:490.00 KB
页数:30页
时间:2017-11-12
《不等式和绝对值不等式》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第一讲不等式和绝对值不等式不等式的基本性质(第一课时)观察以下四个不等式:a+2>a+1----------------(1)a+3>3a-------------------(2)3x+1<2x+6--------------(3)x2、同的不等式。其它重要概念绝对不等式、条件不等式、矛盾不等式2.基本理论1.实数在数轴上的性质:研究不等式的出发点是实数的大小关系。数轴上的点与实数1-1对应,因此可以利用数轴上点的左右位置关系来规定实数的大小:0XABababx用数学式子表示为:设a,b是两个实数,它们在数轴上所对应的点分别是A,B,那么,当点A在点B的左边时,ab.关于a,b的大小关系,有以下基本事实:如果a>b,那么a-b是正数;如果a=b,那么a-b等于零;如果a3、的左边部分反映的是实数的大小顺序,而右边部分则是实数的运算性质,合起来就成为实数的大小顺序与运算性质之间的关系。这一性质不仅可以用来比较两个实数的大小,而且是推导不等式的性质、不等式的证明、解不等式的主要依据。要比较两个实数a与b的大小,可以转化为比较它们的差a-b与0的大小。在这里,0为实数比较大小提供了“标杆”。思考?从上述事实出发,你认为可以用什么方法比较两个实数的大小?例1、试比较2x4+1与2x3+x2的大小解:(2x4+1)-(2x3+x2)=2x4+1-2x3_x2=(2x4-2x3)-(x2-1)=2x3(x-4、1)-(x-1)(x+1)=(x-1)[2x3-(x+1)]=(x-1)[(2x3-2x2)+(2x2-2x)+(x-1)]=(x-1)2(2x2+2x+1)=(x-1)2[2(x+1/2)2+1/2]技能:分组组合;添项、拆项;配方法。=(x-1)2[2(x+1/2)2+1/2]x∈R∴2(x+1/2)2+1/2>0若x≠1那么(x-1)2>0则2x4+1>2x3+x2若x=1那么(x-1)2=0则2x4+1=2x3+x2综上所述:若x=1时2x4+1=2x3+x2若x≠1时2x4+1>2x3+x2求差比较大小分四步进行:①5、作差;②变形;③定号;③下结论。练习比较x2+y2与xy+x+y-1的大小.【解题回顾】用作差比较法比较两个实数的大小,步骤是:作差——变形——判断符号.常见的变形手段是通分、因式分解或配方等;变形的结果是常数、若干个因式的积或完全平方式等.例2、比较练习题1.已知x≠0,比较(x2+2)2与x4+x2+4的大小.2.比较(x2+2)2与x4+5x2+2的大小3.比较x3与x2-x+1的大小.【解题回顾】本题的解答关键在于选择合适的方法.【典型例题】例3、比较以下两个实数的大小:作商比较法:作商——变形——与1比较大小.大多用6、于比较幂指式的大小.练习2、选择题:已知,在以下4个不等式中正确的是:(1)(2)(3)(4)小结主要内容基本理论:a-b>0<=>a>ba-b=0<=>a=ba-b<0<=>a7、时)【知识回顾】1、不等式的概念:同向不等式;异向不等式;同解不等式.2、比较两个实数大小的主要方法:(1)作差比较法:作差——变形——定号——下结论;(2)作商比较法:作商——变形——与1比较大小——下结论.大多用于比较幂指式的大小.探究!类比等式的基本性质,不等式有哪些基本性质呢?不等式的基本性质单向性双向性问题上述结论是用类比的方法得到的,它们一定是正确的吗?你能够给出它们的证明吗?注意1、注意公式成立的条件,要特别注意“符号问题”;2、要会用自然语言描述上述基本性质;3、上述基本性质是我们处理不等式问题的理论基础。例28、、已知a>b>0,C
2、同的不等式。其它重要概念绝对不等式、条件不等式、矛盾不等式2.基本理论1.实数在数轴上的性质:研究不等式的出发点是实数的大小关系。数轴上的点与实数1-1对应,因此可以利用数轴上点的左右位置关系来规定实数的大小:0XABababx用数学式子表示为:设a,b是两个实数,它们在数轴上所对应的点分别是A,B,那么,当点A在点B的左边时,ab.关于a,b的大小关系,有以下基本事实:如果a>b,那么a-b是正数;如果a=b,那么a-b等于零;如果a3、的左边部分反映的是实数的大小顺序,而右边部分则是实数的运算性质,合起来就成为实数的大小顺序与运算性质之间的关系。这一性质不仅可以用来比较两个实数的大小,而且是推导不等式的性质、不等式的证明、解不等式的主要依据。要比较两个实数a与b的大小,可以转化为比较它们的差a-b与0的大小。在这里,0为实数比较大小提供了“标杆”。思考?从上述事实出发,你认为可以用什么方法比较两个实数的大小?例1、试比较2x4+1与2x3+x2的大小解:(2x4+1)-(2x3+x2)=2x4+1-2x3_x2=(2x4-2x3)-(x2-1)=2x3(x-4、1)-(x-1)(x+1)=(x-1)[2x3-(x+1)]=(x-1)[(2x3-2x2)+(2x2-2x)+(x-1)]=(x-1)2(2x2+2x+1)=(x-1)2[2(x+1/2)2+1/2]技能:分组组合;添项、拆项;配方法。=(x-1)2[2(x+1/2)2+1/2]x∈R∴2(x+1/2)2+1/2>0若x≠1那么(x-1)2>0则2x4+1>2x3+x2若x=1那么(x-1)2=0则2x4+1=2x3+x2综上所述:若x=1时2x4+1=2x3+x2若x≠1时2x4+1>2x3+x2求差比较大小分四步进行:①5、作差;②变形;③定号;③下结论。练习比较x2+y2与xy+x+y-1的大小.【解题回顾】用作差比较法比较两个实数的大小,步骤是:作差——变形——判断符号.常见的变形手段是通分、因式分解或配方等;变形的结果是常数、若干个因式的积或完全平方式等.例2、比较练习题1.已知x≠0,比较(x2+2)2与x4+x2+4的大小.2.比较(x2+2)2与x4+5x2+2的大小3.比较x3与x2-x+1的大小.【解题回顾】本题的解答关键在于选择合适的方法.【典型例题】例3、比较以下两个实数的大小:作商比较法:作商——变形——与1比较大小.大多用6、于比较幂指式的大小.练习2、选择题:已知,在以下4个不等式中正确的是:(1)(2)(3)(4)小结主要内容基本理论:a-b>0<=>a>ba-b=0<=>a=ba-b<0<=>a7、时)【知识回顾】1、不等式的概念:同向不等式;异向不等式;同解不等式.2、比较两个实数大小的主要方法:(1)作差比较法:作差——变形——定号——下结论;(2)作商比较法:作商——变形——与1比较大小——下结论.大多用于比较幂指式的大小.探究!类比等式的基本性质,不等式有哪些基本性质呢?不等式的基本性质单向性双向性问题上述结论是用类比的方法得到的,它们一定是正确的吗?你能够给出它们的证明吗?注意1、注意公式成立的条件,要特别注意“符号问题”;2、要会用自然语言描述上述基本性质;3、上述基本性质是我们处理不等式问题的理论基础。例28、、已知a>b>0,C
3、的左边部分反映的是实数的大小顺序,而右边部分则是实数的运算性质,合起来就成为实数的大小顺序与运算性质之间的关系。这一性质不仅可以用来比较两个实数的大小,而且是推导不等式的性质、不等式的证明、解不等式的主要依据。要比较两个实数a与b的大小,可以转化为比较它们的差a-b与0的大小。在这里,0为实数比较大小提供了“标杆”。思考?从上述事实出发,你认为可以用什么方法比较两个实数的大小?例1、试比较2x4+1与2x3+x2的大小解:(2x4+1)-(2x3+x2)=2x4+1-2x3_x2=(2x4-2x3)-(x2-1)=2x3(x-
4、1)-(x-1)(x+1)=(x-1)[2x3-(x+1)]=(x-1)[(2x3-2x2)+(2x2-2x)+(x-1)]=(x-1)2(2x2+2x+1)=(x-1)2[2(x+1/2)2+1/2]技能:分组组合;添项、拆项;配方法。=(x-1)2[2(x+1/2)2+1/2]x∈R∴2(x+1/2)2+1/2>0若x≠1那么(x-1)2>0则2x4+1>2x3+x2若x=1那么(x-1)2=0则2x4+1=2x3+x2综上所述:若x=1时2x4+1=2x3+x2若x≠1时2x4+1>2x3+x2求差比较大小分四步进行:①
5、作差;②变形;③定号;③下结论。练习比较x2+y2与xy+x+y-1的大小.【解题回顾】用作差比较法比较两个实数的大小,步骤是:作差——变形——判断符号.常见的变形手段是通分、因式分解或配方等;变形的结果是常数、若干个因式的积或完全平方式等.例2、比较练习题1.已知x≠0,比较(x2+2)2与x4+x2+4的大小.2.比较(x2+2)2与x4+5x2+2的大小3.比较x3与x2-x+1的大小.【解题回顾】本题的解答关键在于选择合适的方法.【典型例题】例3、比较以下两个实数的大小:作商比较法:作商——变形——与1比较大小.大多用
6、于比较幂指式的大小.练习2、选择题:已知,在以下4个不等式中正确的是:(1)(2)(3)(4)小结主要内容基本理论:a-b>0<=>a>ba-b=0<=>a=ba-b<0<=>a
7、时)【知识回顾】1、不等式的概念:同向不等式;异向不等式;同解不等式.2、比较两个实数大小的主要方法:(1)作差比较法:作差——变形——定号——下结论;(2)作商比较法:作商——变形——与1比较大小——下结论.大多用于比较幂指式的大小.探究!类比等式的基本性质,不等式有哪些基本性质呢?不等式的基本性质单向性双向性问题上述结论是用类比的方法得到的,它们一定是正确的吗?你能够给出它们的证明吗?注意1、注意公式成立的条件,要特别注意“符号问题”;2、要会用自然语言描述上述基本性质;3、上述基本性质是我们处理不等式问题的理论基础。例2
8、、已知a>b>0,C
此文档下载收益归作者所有