.二次函数的图象与性质b

.二次函数的图象与性质b

ID:15056703

大小:7.39 MB

页数:34页

时间:2018-08-01

.二次函数的图象与性质b_第1页
.二次函数的图象与性质b_第2页
.二次函数的图象与性质b_第3页
.二次函数的图象与性质b_第4页
.二次函数的图象与性质b_第5页
资源描述:

《.二次函数的图象与性质b》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、二次函数的图象与性质一、选择题1.(2016湖南怀化,7,4分)二次函数y=x2+2x﹣3的开口方向、顶点坐标分别是(  )A.开口向上,顶点坐标为(﹣1,﹣4)B.开口向下,顶点坐标为(1,4)C.开口向上,顶点坐标为(1,4)D.开口向下,顶点坐标为(﹣1,﹣4)【分析】根据a>0确定出二次函数开口向上,再将函数解析式整理成顶点式形式,然后写出顶点坐标.【解答】解:∵二次函数y=x2+2x﹣3的二次项系数为a=1>0,∴函数图象开口向上,∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标为(﹣1,﹣4

2、).故选A.2.(2016湖南永州,8,4分)抛物线y=x2+2x+m﹣1与x轴有两个不同的交点,则m的取值范围是(  )A.m<2B.m>2C.0<m≤2D.m<﹣2【分析】由抛物线与x轴有两个交点,则△=b2﹣4ac>0,从而求出m的取值范围.【解答】解:∵抛物线y=x2+2x+m﹣1与x轴有两个交点,∴△=b2﹣4ac>0,即4﹣4m+4>0,解得m<2,故选A.3.(2016新疆内高班,7,5分)已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论中正确的是(  )A.a>0B.c

3、<0C.3是方程ax2+bx+c=0的一个根D.当x<1时,y随x的增大而减小【分析】根据二次函数的图象性质可以做出判断.【解答】解:(A)图象开口向下,所以a<0,故(A)错误;(B)图象与y轴交点在y轴的正半轴,所以C>0,故(B)错误;(C)因为对称轴为x=1,所以(﹣1,0)与(3,0)关于x=1对称,故x=3是ax2+bx+c=0的一个根;故(C)正确;(D)由图象可知:当x<1时,y随x的增大而增大;故(D)错误.故选(C)4.(2016四川资阳,10,3分)已知二次函数y=x2+bx+c与x

4、轴只有一个交点,且图象过A(x1,m)、B(x1+n,m)两点,则m、n的关系为(  )A.m=nB.m=nC.m=n2D.m=n2【分析】由“抛物线y=x2+bx+c与x轴只有一个交点”推知x=﹣时,y=0.且b2﹣4c=0,即b2=4c,其次,根据抛物线对称轴的定义知点A、B关于对称轴对称,故A(﹣﹣,m),B(﹣+,m);最后,根据二次函数图象上点的坐标特征即可得出结论.【解答】解:∵抛物线y=x2+bx+c与x轴只有一个交点,∴当x=﹣时,y=0.且b2﹣4c=0,即b2=4c.又∵点A(x1,m

5、),B(x1+n,m),∴点A、B关于直线x=﹣对称,∴A(﹣﹣,m),B(﹣+,m),将A点坐标代入抛物线解析式,得m=(﹣﹣)2+(﹣﹣)b+c,即m=﹣+c,∵b2=4c,∴m=n2,故选D. 5.(2016广西贺州,10,3分)抛物线y=ax2+bx+c的图像如图所示,则一次函数y=ax+b与反比例函数y=在同一平面直角坐标系内的图像大致为(  )A.(2,5)B.(5,2)C.(2,-5)D.(5,-2)【答案】B6.(2016江苏宿迁,8,3分)若二次函数y=ax2﹣2ax+c的图象经过点(﹣

6、1,0),则方程ax2﹣2ax+c=0的解为(  )A.x1=﹣3,x2=﹣1B.x1=1,x2=3C.x1=﹣1,x2=3D.x1=﹣3,x2=1【分析】直接利用抛物线与x轴交点求法以及结合二次函数对称性得出答案.【解答】解:∵二次函数y=ax2﹣2ax+c的图象经过点(﹣1,0),∴方程ax2﹣2ax+c=0一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数y=ax2﹣2ax+c的图象与x轴的另一个交点为:(3,0),∴方程ax2﹣2ax+c=0的解为:x1=﹣1,x2=3.故选:C

7、.【点评】此题主要考查了抛物线与x轴的交点,正确应用二次函数对称性是解题关键.7.(2016•四川达州,10,3分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0),与y轴的交点B在(0,﹣2)和(0,﹣1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc>0②4a+2b+c>0③4ac﹣b2<8a④<a<⑤b>c.其中含所有正确结论的选项是(  )A.①③B.①③④C.②④⑤D.①③④⑤【分析】根据对称轴为直线x=1及图象开口向下可判断出a、b、c的符号,从而

8、判断①;根据对称轴得到函数图象经过(3,0),则得②的判断;根据图象经过(﹣1,0)可得到a、b、c之间的关系,从而对②⑤作判断;从图象与y轴的交点B在(0,﹣2)和(0,﹣1)之间可以判断c的大小得出④的正误.【解答】解:①∵函数开口方向向上,∴a>0;∵对称轴在原点左侧∴ab异号,∵抛物线与y轴交点在y轴负半轴,∴c<0,∴abc>0,故①正确;②∵图象与x轴交于点A(﹣1,0),对称轴为直线x=﹣1,∴图象与x轴的另一个

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。