欢迎来到天天文库
浏览记录
ID:14744591
大小:1022.50 KB
页数:34页
时间:2018-07-30
《第十一章 概率与统计》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第十二章概率与统计第一部分五年高考荟萃2009年高考题一、选择题1.(09山东11)在区间上随机取一个数,的值介于0到之间的概率为()A.B.C.D.【解析】在区间[-1,1]上随机取一个数x,即时,要使的值介于0到之间,需使或∴或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A.答案A2.(09山东文)在区间上随机取一个数x,的值介于0到之间的概率为().A.B.C.D.【解析】在区间上随机取一个数x,即时,要使的值介于0到之间,需使或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A.答案A3.(09安徽卷理)考察正方体6个面的中心,甲
2、从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于()ABCDEFA.B.C.D.【解析】如图,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,共有种不同取法,其中所得的两条直线相互平行但不重合有共12对,所以所求概率为,选D答案 D4.(2009安徽卷文)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于()A.1B.C.D.0【解析】依据正方体各中心对称性可判断等边三角形有个.由正方体各中心的对称性可
3、得任取三个点必构成等边三角形,故概率为1,选A。答案A5、(2009江西卷文)甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为()A.B.C.D.【解析】所有可能的比赛分组情况共有种,甲乙相遇的分组情况恰好有6种,故选.答案D6.(2009江西卷理)为了庆祝六一儿童节,某食品厂制作了种不同的精美卡片,每袋食品随机装入一张卡片,集齐种卡片可获奖,现购买该种食品袋,能获奖的概率为()A.B.C.D.【解析】故选D答案D7.(2009四川卷文)设矩形的长为,宽为,其比满足
4、∶=,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是()A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定【解析】甲批次的平均数为0.617,乙批次的平均数为0.613答案A8
5、.(2009辽宁卷文)ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为()A.B.C.D.【解析】长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为因此取到的点到O的距离小于1的概率为÷2=取到的点到O的距离大于1的概率为答案B9.(2009年上海卷理)若事件与相互独立,且,则的值等于()A.B.C.D.【解析】==答案B二、填空题10.(2009广东卷理)已知离散型随机变量的分布列如右表.若,,则,.【解析】由题知,,,解得,.答案11.(2009安徽卷理)若随机变量
6、,则=________.答案12.(2009安徽卷文)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________。【解析】依据四条边长可得满足条件的三角形有三种情况:2、3、4或3、4、5或2、4、5,故=0.75.答案0.7513.(2009江苏卷)现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为.【解析】考查等可能事件的概率知识。从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的
7、事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2。答案0.214.(2009江苏卷)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为=.【解析】考查统计中的平均值与方差的运算。甲班的方差较小,数据的平均值为7,故方差答案15.(2009湖北卷文)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是,三人中至少有一人达标的概率是。【解析】三人均达标为0.8×0
8、.6×0.5=0.24,三人中至少有一人达标为1-0
此文档下载收益归作者所有