解析几何知识点总结

解析几何知识点总结

ID:14473269

大小:392.50 KB

页数:8页

时间:2018-07-28

解析几何知识点总结_第1页
解析几何知识点总结_第2页
解析几何知识点总结_第3页
解析几何知识点总结_第4页
解析几何知识点总结_第5页
资源描述:

《解析几何知识点总结》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、解析几何1、抛物线的标准方程、图象及几何性质:焦点在轴上,开口向右焦点在轴上,开口向左焦点在轴上,开口向上焦点在轴上,开口向下标准方程图形xOFPyOFPyxOFPyxOFPyx顶点对称轴轴轴焦点离心率准线通径焦半径焦点弦(当时,为——通径)焦准距81.抛物线的概念平面内与一定点F和一条定直线l的距离相等的点的轨迹叫做抛物线(定点F不在定直线l上)。定点F叫做抛物线的焦点,定直线l叫做抛物线的准线。方程叫做抛物线的标准方程。注意:它表示的抛物线的焦点在x轴的正半轴上,焦点坐标是F(,0),它的准线方程是;2.抛物线的性质一条抛物线,由

2、于它在坐标系的位置不同,方程也不同,有四种不同的情况,所以抛物线的标准方程还有其他几种形式:,,.这四种抛物线的图形、标准方程、焦点坐标以及准线方程。说明:(1)通径:过抛物线的焦点且垂直于对称轴的弦称为通径;(2)抛物线的几何性质的特点:有一个顶点,一个焦点,一条准线,一条对称轴,无对称中心,没有渐近线;(3)注意强调的几何意义:是焦点到准线的距离。题型1:抛物线(1)已知抛物线的焦点坐标是F(0,2),求它的标准方程题型2:抛物线的性质例2.(1)若抛物线的焦点与椭圆的右焦点重合,则的值为()A.B.C.D.(2)抛物线的准线方程

3、是()(A)(B)(C)(D)8(3)抛物线的焦点坐标是()A.(2,0)B.(-2,0)C.(4,0)D.(-4,0)例3.(1)(全国卷I)抛物线上的点到直线距离的最小值是()A.B.C.D.(2)对于抛物线y2=4x上任意一点Q,点P(a,0)都满足

4、PQ

5、≥

6、a

7、,则a的取值范围是()A.(-∞,0)B.(-∞,2C.[0,2]D.(0,2)关于双曲线知识点的补充:1、双曲线的定义:平面内与两个定点的距离的差的绝对值等于常数(小于)的点的轨迹。第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数的点的轨迹。两个定点为

8、双曲线的焦点,焦点间距离叫做焦距;定直线叫做准线。常数叫做离心率。注意:与()表示双曲线的一支。表示两条射线;没有轨迹;2、双曲线的标准方程①焦点在x轴上的方程:(a>0,b>0);②焦点在y轴上的方程:(a>0,b>0);③当焦点位置不能确定时,也可直接设椭圆方程为:mx2-ny2=1(m·n<0);④双曲线的渐近线:改1为0,分解因式则可得两条渐近线之方程.3、双曲线的渐近线:①求双曲线的渐近线,可令其右边的1为0,即得,因式分解得到。②与双曲线共渐近线的双曲线系方程是;84、等轴双曲线:为,其离心率为6、几个概念:8①焦准距:;

9、②通径:;③等轴双曲线x2-y2=l(l∈R,l≠0):渐近线是y=±x,离心率为:;④焦点三角形的面积:b2cot(其中∠F1PF2=q);⑤弦长公式:

10、AB

11、=;⑥注意;椭圆中:c2=a2-b2,而在双曲线中:c2=a2+b2,8双曲线的图象及几何性质:中心在原点,焦点在轴上中心在原点,焦点在轴上标准方程图形xOF1F2PyA2A1yxOF1PB2B1F2顶点对称轴轴,轴;虚轴为,实轴为焦点焦距离心率(离心率越大,开口越大)准线渐近线通径(为焦准距)焦半径在左支在右支在下支在上支焦准距87、直线与双曲线的位置关系:讨论双曲线与直线

12、的位置关系时通常有两种处理方法:①代数法:②、数形结合法。8、双曲线中的定点、定值及参数的取值范围问题:①定点、定值问题:通常有两种处理方法:第一种方法Þ是从特殊入手,先求出定点(或定值),再证明这个点(值)与变量无关;第二种方法Þ是直接推理、计算;并在计算的过程中消去变量,从而得到定点(定值)。②关于最值问题:常见解法有两种:代数法与几何法。若题目中的条件和结论能明显体现几何特征及意义,则考虑利用图形的性质来解决,这就是几何法;若题目中的条件和结论难以体现一种明确的函数关系,则可首先建立目标函数,再求这个函数的最值,求函数的最值常用

13、的方法有配方法、判别式法、重要不等式法、函数的单调性法等。③参数的取值范围问题:此类问题的讨论常用的方法有两种:第一种是不等式(组)求解法Þ根据题意结合图形列出所讨论的参数适合的不等式(组),通过解不等式再得出参数的变化范围;第二种是函数的值域求解法:把所讨论的参数表示为某个变量的函数,通过讨论函数的值域求得参数的变化范围。关于椭圆知识点的补充:1、椭圆的标准方程:①焦点在x轴上的方程:(a>b>0);②焦点在y轴上的方程:(a>b>0);③当焦点位置不能确定时,也可直接设椭圆方程为:mx2+ny2=1(m>0,n>0);④、参数方程

14、:2、椭圆的定义:平面内与两个定点的距离的和等于常数(大于)的点的轨迹。第二定义:平面内与一个定点的距离和到一条定直线的距离的比是常数的点的轨迹。=e(椭圆的焦半径公式:

15、PF1

16、=a+ex0,

17、PF2

18、=a-ex0)其

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。