2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)

2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)

ID:14431394

大小:130.79 KB

页数:7页

时间:2018-07-28

2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)_第1页
2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)_第2页
2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)_第3页
2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)_第4页
2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)_第5页
资源描述:

《2018版高中数学人教b版选修2-2学案:1.3.2 利用导数研究函数的极值(一)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、2017-2018学年人教B版高中数学学案1.3.2 利用导数研究函数的极值(一)明目标、知重点 1.了解函数极值的概念,会从几何方面直观理解函数的极值与导数的关系,并会灵活应用.2.掌握函数极值的判定及求法.3.掌握函数在某一点取得极值的条件.1.极值点与极值已知函数y=f(x),设x0是定义域(a,b)内任一点,如果对x0附近的所有点x,都有f(x)f(x0),则称函数f(x)在点x0处取极小值,记作y极小=f(x0).并把x0称为

2、函数f(x)的一个极小值点.极大值与极小值统称为极值.极大值点与极小值点统称为极值点.2.求函数f(x)极值的方法第1步 求导数f′(x);第2步 求方程f′(x)=0的所有实数根;第3步 考察在每个根x0附近,从左到右,导函数f′(x)的符号如何变化.如果f′(x)的符号由正变负,则f(x0)是极大值;如果由负变正,则f(x0)是极小值.[情境导学]在必修1中,我们研究了函数在定义域内的最大值与最小值问题.但函数在定义域内某一点附近,也存在着哪一点的函数值大,哪一点的函数值小的问题,如何利用导数的知识来判断函数在某点附近函数值的大小问题?又如何求出这些值?这就是本节我们要研

3、究的主要内容.探究点一 函数的极值与导数的关系思考1 如图观察,函数y=f(x)在d、e、f、g、h、i等点处的函数值与这些点附近的函数值有什么关系?y=f(x)在这些点处的导数值是多少?在这些点附近,y=f(x)的导数的符号有什么规律?答 以d、e两点为例,函数y=f(x)在点x=d处的函数值f(d)比它在点x=d72017-2018学年人教B版高中数学学案附近其他点的函数值都小,f′(d)=0;在x=d的附近的左侧f′(x)<0,右侧f′(x)>0.类似地,函数y=f(x)在点x=e处的函数值f(e)比它在x=e附近其他点的函数值都大,f′(e)=0;在x=e附近的左侧f

4、′(x)>0,右侧f′(x)<0.小结 思考1中点d叫做函数y=f(x)的极小值点,f(d)叫做函数y=f(x)的极小值;点e叫做函数y=f(x)的极大值点,f(e)叫做函数y=f(x)的极大值.极大值点、极小值点统称为极值点,极大值和极小值统称为极值.思考2 函数的极大值一定大于极小值吗?在区间内可导函数的极大值和极小值是唯一的吗?答 函数的极大值与极小值并无确定的大小关系,一个函数的极大值未必大于极小值;在区间内可导函数的极大值或极小值可以不止一个.思考3 若某点处的导数值为零,那么,此点一定是极值点吗?举例说明.答 可导函数的极值点处导数为零,但导数值为零的点不一定是极

5、值点.可导函数f(x)在x0处取得极值的充要条件是f′(x0)=0且在x0两侧f′(x)的符号不同.例如,函数f(x)=x3可导,且在x=0处满足f′(0)=0,但由于当x<0和x>0时均有f′(x)>0,所以x=0不是函数f(x)=x3的极值点.例1 求函数f(x)=x3-4x+4的极值.解 f′(x)=x2-4.解方程x2-4=0,得x1=-2,x2=2.由f′(x)>0,得x<-2或x>2;由f′(x)<0,得-2

6、调递增↗由表可知:当x=-2时,f(x)有极大值f(-2)=;当x=2时,f(x)有极小值f(2)=-.反思与感悟 求可导函数f(x)的极值的步骤:(1)确定函数的定义区间,求导数f′(x);(2)求方程f′(x)=0的根;(3)用函数的导数为0的点,顺次将函数的定义区间分成若干个小开区间,并列成表格.检测f′(x)在方程根左右两侧的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果72017-2018学年人教B版高中数学学案左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值.跟踪训练1 判断下列函数是否有极值,如果有极值

7、,请求出其极值;若无极值,请说明理由.(1)y=8x3-12x2+6x+1;(2)y=x

8、x

9、;(3)y=1-(x-2).解 (1)∵y′=24x2-24x+6,令y′=0,即24x2-24x+6=0,解得x=,当x>时,y′>0;当x<时,y′>0.∴此函数无极值.(2)令y=x

10、x

11、=0,则x=0,且y=当x>0时,y=x2是单调增函数;当x<0时,y=-x2也是单调增函数.故函数y=x

12、x

13、在x=0处无极值.另外,∵当x>0时,y′=2x,y′=0无解,当x<0时,y′=-2x,y′=0也无解,∴

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。