欢迎来到天天文库
浏览记录
ID:14296835
大小:197.00 KB
页数:11页
时间:2018-07-27
《椭圆中任意弦所对角的范围》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、正交圆锥曲线的交点特性及相关的角度范围问题Wwdwwd1/17任意圆锥曲线的交点问题实质都是四次方程解的问题,通常较为复杂。但是对于正交的圆锥曲线的交点特性,我们却可以得到一些好的几何特性,并加以利用。本文意在利用圆锥曲线系的解析方法得到正交圆锥曲线交点的一个重要性质,并且利用这一性质分析圆锥曲线中任意弦所对角的取值范围。我们先看一个常规问题:问题1:椭圆上两端点A(-5,0)、B(5,0),在椭圆上求一点P,使得∠APB最大。方法1:常规解析法,可以设P的参数坐标,然后利用两直线的夹角公式以及基本不等式的方法求出P点就在短轴顶
2、点。方法2:可以设想过AB的圆,当圆与椭圆相切时,显然切点就是我们要找的P点。此法优点在于简结,但是有个缺陷,因为我们可以说圆与椭圆相切于椭圆对称的两侧而非短轴顶点(虽然实际并非如此)。另外,如果A,B两点是椭圆上的任意点,以上的方法1就比较繁琐,方法2虽然依旧得到过AB的圆与椭圆的切点即为所求的简洁结论,但是除了仍然面临上文的那条缺陷外,具体求P点也成为问题。利用本文得到的关于正交圆锥曲线交点的一个重要性质可以完善方法2,更为本质的认识这类问题。一、准备工作1、正交的定义:若平面上两条曲线都是轴对称图形,并且这两条曲线存在相互
3、垂直的对称轴,则称这两条曲线相互正交。显然圆与所有圆锥曲线都正交。我们这里将对称轴垂直坐标轴的圆锥曲线称为标准圆锥曲线。所以标准圆锥曲线都不含交叉项。2、两圆锥曲线相切的定义:两条圆锥曲线C1、C2有公共点P,且过P点C1、C2有同一条切线,则称这两条圆锥曲线相切于P点。P称为C1,C2的切点。直观上,我们设想C1、C2原来相交于A,B两点,当我们适当移动C1,C2中的一条或两条,使得AB越来越接近,最终重合与P,根据切线的定义,割线AB最终同时成为C1,C2的过P的切线。这样C1,C2就相切于P点。所以,从方程解的角度看,AB
4、本来是C1,C2联列得到的四次实系数方程的两个相异实根,而当他们重合于P后,就成为重根。即切点就是实重根点,对应两实数解。3、圆锥曲线交点、切点的个数:引理:任意两条圆锥曲线最多有4个不同的公共点,并且只有以下几种情况:(1)若共有4个不同的公共点,则其中不存在两曲线的切点。(2)若共有3个不同的公共点,则其中有且只有1个是切点。(3)若共有2个不同的公共点,则这两个点要么都是个切点,要么都不是。(4)若共有1个公共点,则这个点必是切点。(5)没有公共点。证明:根据代数基本定理,C1,C2联列得到的四次实系数方程在复数域内有且只
5、有4个根,其中实根和虚根都是成对出现。所以根的所有情况是:Ⅰ4个相异实根,对应上文的(1)Ⅱ4个实根,其中两个相等,另外两个不等。对应(2)Ⅲ4个实根,两两相等对应(3)中的两个切点。Ⅳ2个相异实根,2个虚根,对应(3)中的都不是切点的情况。Ⅴ2个相等的实根,2个虚根,对应(4)。Ⅵ4个虚根,对应(5)。到这里我们已经可以解释问题1的方法2中为何圆与椭圆只能相切于椭圆短轴顶点了。根据圆与椭圆的对称性,假如切点不是短轴顶点,比如说切点在短轴左边,则右边对称位置也是切点。那么这样相当于圆与椭圆有六解,这与最多四解矛盾。二、正交圆锥曲
6、线的交点特性定理1:若圆与其它圆锥曲线C相交于4个不同的点,则这4点两两连线所成的角的角平分线都垂直或平行于C的对称轴。(连线平行的情况除外)此定理等价于圆与标准的圆锥曲线的4交点,任意两两分组连线的斜率相反。(若两点连线斜率不存在,则另外两点连线斜率也不存在)证明:如图1我们先证C为椭圆时,不妨以C的中心为原点,对称轴为轴建立直角坐标系。设点E坐标为,椭圆为,直线AB为:,直线CD为:利用曲线系方程:这个方程代表一个圆方程。此时的系数为,因此必须即斜率相反。若不存在,则也不存在。图1同理,AC的斜率与BD的斜率相反,AD的斜率
7、与BC的斜率相反。从上面的证明过程我们看到,将椭圆换成其它的圆锥曲线我们同样可以证明这个结论。因为,其它标准的圆锥曲线同样不含交叉项。这就证明了定理1。推论1:两条正交的圆锥曲线相交于4点,则4点两两分组连线的角平分线垂直或平行于圆锥曲线的对称轴。(连线平行除外)此推论等价于两条正交的标准的圆锥曲线相交于4点,则4点两两分组连线的斜率相反。在定理1的证明中我们看到,只要①式表示一个不含项的曲线,就有。两条正交的圆锥曲线,以其中一条对称轴为坐标轴建立坐标系,另外一条也就是标准的。所以推论成立。推论2:两条正交的圆锥曲线相交于4点,
8、则4点共圆。由推论1,因为相交成的四边对边斜率相反,所以根据到角公式,四边形的对角互补,即四点共圆。推论3:两条斜率相反的直线与标准的圆锥曲线C:相交于4点,则这4点共圆。利用过交点的曲线系方程:随着t的变化,上式表示所有过4交点的标准的圆锥曲线。当然其中也包括
此文档下载收益归作者所有