tps,thin plate spline, 薄板样条插值函数,tps变换_图文

tps,thin plate spline, 薄板样条插值函数,tps变换_图文

ID:14214895

大小:1.82 MB

页数:24页

时间:2018-07-26

tps,thin plate spline, 薄板样条插值函数,tps变换_图文_第1页
tps,thin plate spline, 薄板样条插值函数,tps变换_图文_第2页
tps,thin plate spline, 薄板样条插值函数,tps变换_图文_第3页
tps,thin plate spline, 薄板样条插值函数,tps变换_图文_第4页
tps,thin plate spline, 薄板样条插值函数,tps变换_图文_第5页
资源描述:

《tps,thin plate spline, 薄板样条插值函数,tps变换_图文》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、Thin-PlateSplinesByLionelClark(ReferringtoDavidEberly’swork,http://www.geometrictools.com/)1.Thin-platesplinesDescriptionoftheProblemIndimensions,theideaofthin-platesplinesistochooseafunctionthatexactlyinterpolatessomedatapoints(whicharecalledcontrolp

2、oints),say,,andthatminimizesthebendingenergy,,whereistheHessianmatrixof(matrixofsecond-orderpartialderivativesof)andisthesumofsquaresofthematrixentries.Theinfinitesimalelementofhypervolumeis,wherearethecomponentsof.DescriptionoftheProblemOften,itisals

3、opossibletoformulatetheproblemwithasmoothingparameterforregularization.Afunctionischosenthatdoesnotnecessarilyexactlyinterpolateallthecontrolpointsbutthatdoesminimize.Thesmoothingparameterisandischosenapriori.Thesummationmakesitclearthattherearecontro

4、lpoints.SolutiontotheProblemFirstweconsidertheproblemwithoutsmoothingparameter.AfterapplyingthemethodofCalculusofVariations(afamousmethodinfunctionalanalysisforsearchingforextremevaluesofafunctional),thebiharmonicequationisderivedfrommultivariateEuler

5、-Lagrangeequation,whereistheLaplacianoperator,whichisappliedtwice.However,itisn’talwayspossiblethatthesolutiontothebiharmonicequationalsosatisfytheexactinterpolations.Sowehavetocompromisesomehow.SolutiontotheProblemThebiharmonicequationischosentocompr

6、omisesuchthatdon’tberequiredtovanisheverywherebutonlyneedtovanishwhereexceptatthecontrolpoints.Sothebiharmonicequationismodifiedtoanotherequation,say,,whichisanon-homogeneouslinearpartialdifferentialequation,whereisDiracdeltafunctionandareunknowncoeff

7、icients.SolutiontotheProblemTosolvetheaboveequation,wefirstsolveasimplerone,,towhichtheGreen’sfunctionisasolution.isaradialfunction,expressedexplicitlyaswhere,,.SolutiontotheProblemApplyingtheSuperpositionPrinciple,wegetthegeneralsolutionstothecomprom

8、isedequation,whereisthegeneralsolutionstothebiharmonicequation.SolutiontotheProblemAmong,weonlychoosethepolynomialfunctionsofdegreeone,becausetheirbendingenergyisnull.Sothesolutioniswherearethecomponentsofandareunknownparameters.SolutiontotheP

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。