欢迎来到天天文库
浏览记录
ID:14167643
大小:2.40 MB
页数:37页
时间:2018-07-26
《第2章(弹性力学基础)》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第2章弹性力学基本理论12.1引言12.1.1外力与内力32.1.2应力的概念42.1.3应变的概念62.2应力分析82.2.2一点的应力状态——任意截面上的应力102.2.3主应力122.2.4平衡微分方程152.2.5平面应力状态172.2.6应力边界条件192.3应变分析212.3.1几何方程--应变位移关系212.3.2一点的应变状态及其表达242.3.3相容性条件252.4物理方程272.4.1广义虎克定律272.4.2用位移表达的平衡微分方程322.4.3圣维南原理33习题34第2章弹性力学基本理论本章主要介绍弹性力学的基本概念,主要包括:(1)线弹性问题的几个假设,(
2、2)应力、应变的定义和性质,(3)应力平衡方程、几何方程和物理方程等,这些是进行机械结构有限元分析的重要力学理论基础。要求学习掌握应力、应变基本概念和主要性质,掌握弹性力学基本方程、应力边界条件、协调方程等。2.1引言弹性力学(ElasticTheory)作为一门基础技术科学,是近代工程领域的必要基础之一。在现代工程结构分析,特别是航空、航天、机械、土建和水利工程等设计中,广泛应用弹性力学的基本公式和结论。弹性力学与材料力学(FoundamentalStrengthsofMaterials)在研究内容和基本任务方面是基本相同的,研究对象近似,但是二者的研究方法有较大的差别。材料力学
3、的研究对象是杆状构件,37即长度远大于宽度和厚度的构件,分析这类构件在拉压、剪切、弯曲、扭转等几类典型外载荷作用下的应力和位移。在材料力学中,除了从静力学、几何学、物理学三方面进行分析外,为了简化推导,还引用了一些关于构件的形变状态或应力分布的假定(如平面截面的假定、拉应力在净截面上均匀分布的假定等等)。杆件横截面的变形可以根据平面假设确定,因此综合分析的结果,即问题求解的基本方程,是常微分方程,不存在数学求解困难。而在弹性力学里研究杆状构件,一般都不必引用那些假定,所以其解答要比材料力学里得出的解答精确。当然,弹性力学在研究板壳等一些复杂问题时,也引用了一些有关形变状态或应力分布
4、的假定来简化其数学推导。但是由于弹性力学除研究杆状构件之外,还研究板、壳、块,甚至是三维物体等,因此问题分析只能从微分单元体入手,以分析单元体的平衡、变形和应力应变关系,因此问题综合分析的结果是满足一定边界条件的偏微分方程。也就是说,问题的基本方程是偏微分方程的边值问题。从理论上讲,弹性力学能解决一切弹性体的应力和应变问题。但在工程实际中,一般构件的形状、受力状态、边界条件都比较复杂,所以除少数的典型问题外,对大多数工程实际问题,往往都无法用弹性力学的基本方程直接进行解析求解,有些只能通过数值计算方法来求得其近似解。弹性力学的研究方法决定了它是一门基础理论课程,把弹性力学的理论直接
5、用于分析工程问题具有很大的困难。原因主要在于它的基本方程——偏微分方程边值问题求解困难。由于经典的解析方法很难用于工程构件分析,因此探讨近似解法是弹性力学发展中的一个特色。近似求解方法,如差分法和变分法等,特别是随着计算机的广泛应用而不断发展的有限单元法,为弹性力学的发展和解决工程实际问题开辟了广阔的前景。本章主要介绍弹性力学基本概念、用解析法求解简单弹性力学问题的基础知识,主要包括弹性力学基本方程、边界条件表达式等。掌握这些弹性力学的基础知识对后续有限单元法的学习非常重要。此外,为了更好地理解机械结构有限元分析的基本原理以及将来对分析结果更好地评价和理解,还介绍了机械结构强度失效
6、准则、结构分析中的能量法等方面的基本内容。作为固体力学(SolidMechanics)学科的一个分支,弹性力学的基本任务是针对各种具体情况,确定弹性体内应力与应变的分布规律。也就是说,当已知弹性体的形状、物理性质、受力情况和边界条件时,确定其任一点的应力、应变状态和位移。弹性力学的研究对象是理想弹性体,其应力与应变之间的关系为线性关系,即符合虎克定律。所谓理想弹性体,是指符合下述假设的物体。⑴连续性假定。也就是假定整个物体的体积都被组成该物体的介质所填满,不存在任何空隙。尽管一切物体都是由微小粒子组成的,并不能符合这一假定,但是只要粒子的尺寸以及相邻粒子之间的距离都比物体的尺寸小得
7、很多,则对于物体的连续性假定,就不会引起显著的误差。有了这一假定,物体内的一些物理量(如应力、应变、位移等等)才可能是连续的,因而才可能用坐标的连续函数来表示它们的变化规律。⑵完全弹性假定。这是假定物体服从虎克定律,即应变与引起该应变的应力成正比。反映这一比例关系的常数,就是所谓的弹性常数。弹性常数不随应力或应变的大小和符号而变。由材料力学已知:脆性材料的物体,在应力未超过比例极限前,可以认为是近似的完全弹性体;而韧性材料的物体,在应力未达到屈服极限前,也可以认为是近
此文档下载收益归作者所有