函数性质,定义及有关知识

函数性质,定义及有关知识

ID:14115083

大小:56.50 KB

页数:17页

时间:2018-07-26

函数性质,定义及有关知识_第1页
函数性质,定义及有关知识_第2页
函数性质,定义及有关知识_第3页
函数性质,定义及有关知识_第4页
函数性质,定义及有关知识_第5页
资源描述:

《函数性质,定义及有关知识》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、函数性质,定义及有关知识证明方法⑴定义法:函数定义域是否关于原点对称,对应法则是否相同⑵图像法: f(x)为奇函数<=>f(x)的图像关于原点对称点(x,y)→(-x,-y)f(x)为偶函数<=>f(x)的图像关于Y轴对称点(x,y)→(-x,y)⑶特值法:根据函数奇偶性定义,在定义域内取特殊值自变量,计算后根据因变量的关系判断函数奇偶性。⑷性质法利用一些已知函数的奇偶性及以下准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和(差)是奇函数;两个偶函数的和(差)是偶函数;奇函数与偶函数的和(差)既非奇函数也非偶函数;两个奇函数的积(商)为偶函数;两个偶函数的积(商)为偶函数;奇

2、函数与偶函数的积(商)是奇函数。编辑本段性质1、偶函数没有反函数(偶函数在整个定义域内非单调函数),奇函数的反函数仍是奇函数。2、偶函数在定义域内关于y轴对称的两个区间上单调性相反,奇函数在定义域内关于原点对称的两个区间上单调性相同。3、奇±奇=奇偶±偶=偶奇X奇=偶偶X偶=偶奇X偶=奇(两函数定义域要关于原点对称)4、对于F(x)=f[g(x)]:若g(x)是偶函数,则F[x]是偶函数若g(x)奇函数且f(x)是奇函数,则F(x)是奇函数若g(x)奇函数且f(x)是偶函数,则F(x)是偶函数5、奇函数与偶函数的定义域必须关于原点对称编辑本段奇偶函数图像的特征定理奇函数的图像关于原点成中心对称

3、图表,偶函数的图象关于y轴或轴对称图形。f(x)为奇函数《==》f(x)的图像关于原点对称点(x,y)→(-x,-y)奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。偶函数在某一区间上单调递增,则在它的对称区间上单调递减。编辑本段奇偶函数运算(1).两个偶函数相加所得的和为偶函数.(2).两个奇函数相加所得的和为奇函数.(3).一个偶函数与一个奇函数相加所得的和为非奇函数与非偶函数.(4).两个偶函数相乘所得的积为偶函数.[1](5).两个奇函数相乘所得的积为偶函数.(6).一个偶函数和一个奇函数相乘所得的积为奇函数.一般地,对于函数f(x)⑴如果对于函数f(x)定义域内的任意一个

4、x,都有f(x)=f(-x)或f(x)/f(-x)=1那么函数f(x)就叫做偶函数。关于y轴对称,f(-x)=f(x)。⑵如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x)或f(x)/f(-x)=-1,那么函数f(x)就叫做奇函数。关于原点对称,-f(x)=f(-x)。⑶如果对于函数定义域内的任意一个x,都有f(-x)=-f(x)和f(-x)=f(x),(x∈r,且r关于原点对称.)那么函数f(x)既是奇函数又是偶函数,称为既奇又偶函数。⑷如果对于函数定义域内的存在一个a,使得f(-a)≠f(a),存在一个b,使得f(-b)≠-f(b),那么函数f(x)既不是奇函数又不是偶函

5、数,称为非奇非偶函数。定义域互为相反数,定义域必须关于原点对称特殊的,f(x)=0既是奇函数,又是偶函数。说明:①奇、偶性是函数的整体性质,对整个定义域而言。②奇、偶函数的定义域一定关于原点对称,如果一个函数的定义域不关于原点对称,则这个函数一定不具有奇偶性。(分析:判断函数的奇偶性,首先是检验其定义域是否关于原点对称,然后再严格按照奇、偶性的定义经过化简、整理、再与f(x)比较得出结论)③判断或证明函数是否具有奇偶性的根据是定义。④如果一个奇函数f(x)在x=0处有意义,则这个函数在x=0处的函数值一定为0。并且关于原点对称。编辑本段奇偶函数图象的特征奇函数图象的特征定理奇函数的图象关于原点

6、成中心对称图形f(x)为奇函数<=>f(x)的图象关于原点对称,如图:奇函数奇函数在某一区间上单调递增,则在它的对称区间上也是单调递增。点(x,y)→(-x,-y)偶函数图像的特征定理偶函数的图象关于y轴成轴对称图形f(x)为偶函数<=>f(x)的图象关于Y轴对称,如图偶函数点(x,y)→(-x,y)偶函数在某一区间上单调递减,则在它的对称区间上单调递增。函数的单调性编辑本段意义  函数的单调性就是随着x的变大,y在变大就是增函数,y变小就是减函数,具有这样的性质就说函数具有单调性,符号表示求函数单调性的基本方法  解:先要弄清概念和研究目的,因为函数本身是动态的,所以判断函数的单调性、奇偶性

7、,还有研究函数切线的斜率、极值等等,都是为了更好地了解函数本身所采用的方法。其次就解题技巧而言,当然是立足于掌握课本上的例题,然后再找些典型例题做做就可以了,这部分知识仅就应付解题而言应该不是很难。最后找些考试试卷题目来解,针对考试会出的题型强化一下,所谓知己知彼百战不殆。1.把握好函数单调性的定义。证明函数单调性一般(初学最好用定义)用定义(谨防循环论证),如果函数解析式异常复杂或者具有某种特殊

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。