欢迎来到天天文库
浏览记录
ID:14047271
大小:76.50 KB
页数:32页
时间:2018-07-25
《掌握列一元一次方程解应用题的方法》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、一元一次方程解应用题 学习要求: 掌握列一元一次方程解应用题的方法 (1)记住列方程解应用题的步骤 (2)会找出简单应用题中的已知数,未知数和表示应用题的一个相等关系 (3)会根据题目中的数量关系恰当地设未知数 学习重点:列一元一次方程解应用题 学习难点:找准等量关系(特别是找隐含的等量关系)和布列方程 列方程解应用题,是初中数学的重要内容之一。许多实际问题都归结为解一种方程或方程组,所以列出方程或方程组解应用题是数学联系实际,解决实际问题的一个重要方面;同时通过列方程解应用题
2、,可以培养我们分析问题,解决问题的能力。因此我们要努力学好这部分知识。 一、列方程解应用题的主要步骤: 1、认真审题,理解题意,弄清题目中的数量关系,找出其中的等量关系; 2、用字母表示题目中的未知数,并用这个字母和已知数一起组成表示各数量关系的代数式; 3、利用这些代数式列出反映某个等量关系的方程(注意所使用的单位一定要统一); 4、求出所列方程的解; 5、检验所求的解是否使方程成立,又能使应用题有意义,并写出答案。 二、对常见应用题的解法分析 1、和、差、倍、分问题;这类问题主要应搞清各量
3、之间的关系,注意关键词语。(1)倍数关系:通过关键词语“是几倍,增加几倍,增加到几倍,增加百分之几,增长率……”来体现。(2)多少关系:通过关键词语“多、少、和、差、不足、剩余……”来体现。第一阶梯 例1、A、B两站相距200千米,慢车以每小时36千米的速度从A站开往B站,出发1小时后,快车以每小时46千米的速度从B站到A站,快车开出几小时后,与慢车相遇? 提示:本题属于行程问题,行程问题主要是路程、时间、速度之间的关系。即路程=速度×时间,而行程问题中的相向行进相遇问题又应是甲走的路程+乙走的路程=总路
4、程。如图: 参考答案: 解设快车开出x小时后,与慢车相遇 36x+36×1+46x=200 82x=200-36 82x=164 x=2 答:快车开出2小时后与慢车相遇 说明:解应用题时,要尽可能利用图形,这样有助于分析问题,如上图。慢车走的路程+快车走的路程=全程,这样有助于列方程,另外如单位不统一时要注意统一单位。 例2、一队学生去校外参加劳动,以4千米/时的速度步行前往,走了半小时,学校有紧急通知要传给队长,通讯员骑自行车以14千米/时的速度按原路追上
5、去,通讯员要多少分钟才能追上队伍。 提示:由于通讯员从学校出发按原路追上去,所以与学生是同向而行,于是有这样一个相等关系式:通讯员行进路程=学生行进路程。 说明:此题是行程问题中的追及问题,要注意是同向而行,学生与通讯员走的路程一样多,利用等量关系方程,要注意统一单位。 例3、有一艘轮船在A、B两地间航行,顺流而下需要3小时,逆流而归需要5小时,已知水流速是每小时2千米,求A、B两地距离。 参考答案: 说明:此题利用了静水速,水流速和船速三者之间的关系来列方程解有关航行问题,可以直接设距
6、离,也可以设静水再求距离。 说明: 此题为调动问题,要注意调动前与调动后的人数的变化是增加还是减少,以此来列方程,找等量关系。 例5、一项工作A做40天完成,B做50天完成,先由A做若干天后离去,再由B做,共做46天完成,问A、B两人各做几天? 提示: 说明:把总工作量看成整体"1",那么工作效率为,这样再根据题目要求找出关系式,列出方程。 例6、一个两位数,它的十位数比个位数小3,十位上数字与个位上数字和等于这两位数的,求这个两位数 提示:用代数式表示两位数要特别注意它的表示法
7、,如十位上的数字是a,则其表示数值是10a,个位上的数字是b,则其表示数值为b,那么这两位数为10a+b,不应是ab。 参考答案: 解:设个位上的数字为x,则十位上的数字为x-3,这个两位数应为10(x-3)+x,十位上的数字与个位上的数字和为(x-3)+x 说明:解此题时要注意新数与原数的变化及它们之间的倍分关系。列方程解应用题方法: 1.弄清题意和题目中的数量关系,用字母表示题目中的一个未知数。 2.找出能够表示应用题全部含义的一个相等关系。 3.根据这个相等关系列出所需要的方
8、程。 4.解这个方程,求出未知数。 5.写出答案(包括单位名称)。 例7、运动场的跑道一圈长400米,甲练习骑自行车,平均每分钟骑490米,乙练习跑步,平均每分钟跑250米,两个人从某处同时同向出发,经过多少分钟两个首次相遇? 提示:本题是行程问题中的同向运动问题,这类问题往往以路程差作为等量关系,由题意我们画一个示意图:假设甲、乙二人两人同时从A处出发,经过x分钟后,两人首
此文档下载收益归作者所有