欢迎来到天天文库
浏览记录
ID:13960192
大小:1007.50 KB
页数:34页
时间:2018-07-25
《一轮复习配套讲义第9篇第3讲变量间的相关关系、统计案例》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第3讲 变量间的相关关系、统计案例[最新考纲]1.会作两个相关变量的数据的散点图,会利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程.3.了解独立性检验(只要求2×2列联表)的基本思想、方法及其简单应用.4.了解回归分析的基本思想、方法及其简单应用.知识梳理1.两个变量的线性相关(1)正相关在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)负相关在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负
2、相关.(3)线性相关关系、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.2.回归方程(1)最小二乘法求回归直线,使得样本数据的点到它的距离的平方和最小的方法叫做最小二乘法.(2)回归方程方程=x+是两个具有线性相关关系的变量的一组数据(x1,y1),(x2,y2),…,(xn,yn)的回归方程,其中,是待定参数.3.回归分析(1)定义:对具有相关关系的两个变量进行统计分析的一种常用方法.(2)样本点的中心对于一组具有线性相关关系的数据(x1,y1),(
3、x2,y2),…,(xn,yn)中(,)称为样本点的中心.(3)相关系数当r>0时,表明两个变量正相关;当r<0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间几乎不存在线性相关关系.通常
4、r
5、大于0.75时,认为两个变量有很强的线性相关性.4.独立性检验(1)分类变量:变量的不同“值”表示个体所属的不同类别,像这类变量称为分类变量.(2)列联表:列出两个分类变量的频数表,称为列联表.假设有两个分类变量X和Y,它们的可能取值分别为{x1,x2}和{y1,y
6、2},其样本频数列联表(称为2×2列联表)为:y1y2总计x1aba+bx2cdc+d总计a+cb+da+b+c+d构造一个随机变量K2=,其中n=a+b+c+d为样本容量.(3)独立性检验利用随机变量K2来判断“两个分类变量有关系”的方法称为独立性检验.辨析感悟1.对变量间的相关关系的认识(1)(2014·武汉调研改编)①A项:正方体的棱长与体积是相关关系.(×)②B项:日照时间与水稻的亩产量是相关关系.(√)(2)(教材思考问题改编)相关关系与函数关系都是一种确定性的关系,也是一种因果关系.(×)(3)利用样本点的散
7、点图可以直观判断两个变量的关系是否可以用线性关系去表示.(√)2.对回归直线方程的理解(4)通过回归方程=x+可以估计和观测变量的取值和变化趋势.(√)(5)任何一组数据都对应着一个回归直线方程.(×)(6)(2012·湖南卷改编)设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,判断下列命题的正误:①y与x具有正的线性相关关系.(√)②回归直线过样本点的中心(,).(√)③若该大学某女生身
8、高增加1cm,则其体重约增加0.85kg.(√)④若该大学某女生身高为170cm,则可断定其体重必为58.79kg.(×)3.对独立性检验的认识(7)事件X,Y关系越密切,则由观测数据计算得到的K2的观测值越大.(√)(8)由独立性检验可知,有99%的把握认为物理成绩优秀与数学成绩有关,某人数学成绩优秀,则他有99%的可能物理优秀.(×)[感悟·提升]1.“相关关系与函数关系”的区别函数关系是一种确定性关系,体现的是因果关系;而相关关系是一种非确定性关系,体现的不一定是因果关系,可能是伴随关系.如(2).2.三点提醒 一
9、是回归分析是对具有相关关系的两个变量进行统计分析的方法,只有在散点图大致呈线性时,求出的线性回归方程才有实际意义,否则,求出的线性回归方程毫无意义.如(5).二是根据回归方程进行预报,仅是一个预报值,而不是真实发生的值.如(6)中的④.三是独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.如(8).考点一 两个变量间的相关关系【例1】(2013·湖北卷)四名同学根
10、据各自的样本数据研究变量x,y之间的相关关系,并求得回归直线方程,分别得到以下四个结论:①y与x负相关且=2.347x-6.423;②y与x负相关且=-3.476x+5.648;③y与x正相关且=5.437x+8.493;④y与x正相关且=-4.326x-4.578.其中一定不正确的结论的序号是( ).A.①②B.
此文档下载收益归作者所有