欢迎来到天天文库
浏览记录
ID:13819399
大小:125.00 KB
页数:3页
时间:2018-07-24
《导数的实际应用教案1》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第七课时导数的实际应用(一)一、教学目标:1、知识与技能:⑴让学生掌握在实际生活中问题的求解方法;⑵会利用导数求解最值。2、过程与方法:通过分析具体实例,经历由实际问题抽象为数学问题的过程。3、情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的思想方法二、教学重点:函数建模过程教学难点:函数建模过程三、教学方法:探究归纳,讲练结合四、教学过程(一)、复习:利用导数求函数极值和最值的方法(二)、探究新课例1、在边长为60cm的正方形铁片的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底的边长是多少时,箱底的容积最大?最大容积是多少?解法一:设箱底边长为xc
2、m,则箱高cm,得箱子容积.令=0,解得x=0(舍去),x=40,并求得V(40)=16000由题意可知,当x过小(接近0)或过大(接近60)时,箱子容积很小,因此,16000是最大值答:当x=40cm时,箱子容积最大,最大容积是16000cm3解法二:设箱高为xcm,则箱底长为(60-2x)cm,则得箱子容积.(后面同解法一,略)由题意可知,当x过小或过大时箱子容积很小,所以最大值出现在极值点处.事实上,可导函数、在各自的定义域中都只有一个极值点,从图象角度理解即只有一个波峰,是单峰的,因而这个极值点就是最值点,不必考虑端点的函数值例2、圆柱形金属饮料罐的容积一定时,它的高与底与半径应怎样选
3、取,才能使所用的材料最省?解:设圆柱的高为h,底半径为R,则表面积S=2πRh+2πR2由V=πR2h,得,则S(R)=2πR+2πR2=+2πR2令+4πR=0解得,R=,从而h====2即h=2R因为S(R)只有一个极值,所以它是最小值答:当罐的高与底直径相等时,所用材料最省变式:当圆柱形金属饮料罐的表面积为定值S时,它的高与底面半径应怎样选取,才能使所用材料最省?提示:S=2+h=V(R)=R=)=0.例3、已知某商品生产成本C与产量q的函数关系式为C=100+4q,价格p与产量q的函数关系式为.求产量q为何值时,利润L最大?分析:利润L等于收入R减去成本C,而收入R等于产量乘价格.由此
4、可得出利润L与产量q的函数关系式,再用导数求最大利润.解:收入,利润令,即,求得唯一的极值点答:产量为84时,利润L最大(三)、小结:本节课学习了导数在解决实际问题中的应用.(四)、课堂练习:第69页练习题(五)、课后作业:第69页A组中1、3B组题。五、教后反思:
此文档下载收益归作者所有